Recordings of magnetic fields, thought to be crucial to our solar system's rapid accretion, are potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However, most of these kamacite grains are magnetically non-uniform, so their ability to retain four-billion-year-old magnetic recordings cannot be estimated by previous theories, which assume only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nanometric kamacite grains are stable over solar system timescales and likely the primary carrier of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric magnetic measurements using off-axis electron holography, we demonstrate the thermal stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined with numerical micromagnetic modeling, we determine the stability of the magnetization of these grains. Our study shows that dusty olivine kamacite grains are capable of retaining magnetic recordings from the accreting solar system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862876PMC
http://dx.doi.org/10.1038/s41467-018-03613-1DOI Listing

Publication Analysis

Top Keywords

kamacite grains
16
solar system
12
dusty olivine
12
magnetic recordings
8
grains
6
kamacite
5
oldest magnetic
4
magnetic record
4
solar
4
record solar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!