Dental implants experience rare yet problematic mechanical failures such as fracture that are caused, most often, by (time-dependent) metal fatigue. This paper surveys basic evidence about fatigue failure, its identification and the implant's fatigue performance during service. We first discuss the concept of dental implant fatigue, starting with a review of basic concepts related to this failure mechanism. The identification of fatigue failures using scanning electron microscopy follows, to show that this stage is fairly well defined. We reiterate that fatigue failure is related to the implant design and its surface condition, together with the widely varying service conditions. The latter are shown to vary to an extent that precludes devising average or representative conditions. The statistical nature of the fatigue test results is emphasized throughout the survey to illustrate the complexity in evaluating the fatigue behavior of dental implants from a design perspective. Today's fatigue testing of dental implants is limited to ISO 14801 standard requirements, which ensures certification but does not provide any insight for design purposes due to its limited requirements. We introduce and discuss the random spectrum loading procedure as an alternative to evaluate the implant's performance under more realistic conditions. The concept is illustrated by random fatigue testing in 0.9% saline solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5851262 | PMC |
http://dx.doi.org/10.3390/dj4020016 | DOI Listing |
Polymers (Basel)
December 2024
Glidewell Dental, Irvine, CA 92612, USA.
The aim of this study was to evaluate the mechanical properties and degree of conversion of a novel 3D-printing model resin and compare it to eight commercially available model resins. An experimental resin formulated by our proprietary resin technology along with DentaModel, NextDent 2, KeyModel Ultra, Rodin Model, Die and Model 2, DMR III, LCD Grey, and Grey Resin were used in this study. Parallelepiped specimens (2 × 2 × 25 mm, n = 5) were printed and measured for their flexural strength (FS), flexural modulus (FM), and modulus of resilience (MR) in accordance with ISO-4049.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Laboratório de Farmacologia de Antimicrobianos e Microbiologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil.
Introduction: Simvastatin is an antilipidemic drug that has already demonstrated antibacterial activities on oral and non-oral microorganisms. Silver nanoparticles also exhibit antimicrobial properties, particularly for coating implant surfaces. In this study, we evaluated the effects of combining simvastatin with silver nanoparticles on the formation and viability of biofilms consolidated on titanium discs.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
This review addresses the effects of various decontamination methods on the wettability of titanium and zirconia dental implants. Despite extensive research on surface wettability, there is still a significant gap in understanding how different decontamination techniques impact the inherent wettability of these surfaces. Although the literature presents inconsistent findings on the efficacy of decontamination methods such as lasers, air-polishing, UV light, and chemical treatments, the reviewed studies suggest that decontamination alters in vitro hydrophilicity.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
The Interdisciplinary Center for Dental Research and Development, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 19-21 Jean Louis Calderon Street, 020021 Bucharest, Romania.
Tooth loss replacement using dental implants is becoming more frequent. Traditional dental implant materials such as commercially pure titanium and titanium aluminum vanadium alloys have well-proven mechanical and biological properties. New titanium alloying metals such as niobium provide improved mechanical properties such as lower elastic modulus while displaying comparable or even better biocompatibility.
View Article and Find Full Text PDFMedicina (Kaunas)
November 2024
1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Biofilm formation on cochlear implants (CIs) poses a major problem for surgeons, leading to a high incidence of explantation and revision surgery. Therefore, developing appropriate and cost-effective biofilm detection and prevention techniques is of the essence. In this systematic review, we sought to investigate the development of biofilm formation on CIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!