Comparison of the Relative Potential for Epigenetic and Genetic Variation To Contribute to Trait Stability.

G3 (Bethesda)

DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark

Published: May 2018

The theoretical ability of epigenetic variation to influence the heritable variation of complex traits is gaining traction in the study of adaptation. This theory posits that epigenetic marks can control adaptive phenotypes but the relative potential of epigenetic variation in comparison to genetic variation in these traits is not presently understood. To compare the potential of epigenetic and genetic variation in adaptive traits, we analyzed the influence of DNA methylation variation on the accumulation of chemical defense compounds glucosinolates from the order Brassicales. Several decades of work on glucosinolates has generated extensive knowledge about their synthesis, regulation, genetic variation and contribution to fitness establishing this pathway as a model pathway for complex adaptive traits. Using high-throughput phenotyping with a randomized block design of derived epigenetic Recombinant Inbred Lines, we measured the correlation between DNA methylation variation and mean glucosinolate variation and within line stochastic variation. Using this information, we identified epigenetic Quantitative Trait Loci that contained specific Differentially Methylated Regions associated with glucosinolate traits. This showed that variation in DNA methylation correlates both with levels and variance of glucosinolates and flowering time with trait-specific loci. By conducting a meta-analysis comparing the results to different genetically variable populations, we conclude that the influence of DNA methylation variation on these adaptive traits is much lower than the corresponding impact of standing genetic variation. As such, selective pressure on these traits should mainly affect standing genetic variation to lead to adaptation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940164PMC
http://dx.doi.org/10.1534/g3.118.200127DOI Listing

Publication Analysis

Top Keywords

genetic variation
24
dna methylation
16
variation
15
potential epigenetic
12
adaptive traits
12
methylation variation
12
relative potential
8
epigenetic genetic
8
epigenetic variation
8
variation adaptive
8

Similar Publications

Being the most magnificent plateau in elevation and size on Earth, the Qinghai-Tibet Plateau has a profound impact on biodiversity due to the unique geographic and climatic conditions. Here we review the speciation patterns and genetic diversity of the birds from the Qinghai-Tibet Plateau in relation to the geological history and climatic changes. First, the uplift of the Qinghai-Tibet Plateau forms a geographic barrier and promotes interspecific and intraspecific genetic differentiation.

View Article and Find Full Text PDF

The origin of domestic sheep (Ovis aries) can be traced back to the Asian mouflon (Ovis gmelini), in the Near East around 10 000 years ago. Genetic divergence within mouflon populations can occur due to factors such as geographical isolation, social structures, and environmental pressures, leading to different affinities with domestic sheep. However, few studies have reported the extent to which mouflon sheep contribute to domestic sheep in different regions.

View Article and Find Full Text PDF

Background: Periodontitis destroys the tooth's supporting structures and attachment apparatus. Local or systemic factors can cause it. Traditionally, diagnosis is based on clinical parameters that may not consistently reflect an accurate confirmation.

View Article and Find Full Text PDF

Males in many species show courtship and mating preferences for certain females over others when given the choice. One of the most common targets of male mate choice in insects is female body size, with males preferring to court and mate with larger, higher-fecundity females and investing more resources in matings with those females. Although this preference is well-documented at the species level, less is known about how this preference varies within species and whether there is standing genetic variation for male mate choice within populations.

View Article and Find Full Text PDF

Background: Legless lizards, the slow worms of the genus are forming secondary contact zones within their Europe-wide distribution.

Methods: We examined 35 populations of and to identify the level of morphological and genetic divergence in Poland. We applied a conventional study approach using metric, meristic, and categorial (coloration) features for a phenotype analysis, and two standard molecular markers, a mitochondrial (NADH-ubiquinone oxidoreductase chain 2; ) and a nuclear (V(D)J recombination-activating protein 1; ) one.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!