Understanding Splenomegaly in Myelofibrosis: Association with Molecular Pathogenesis.

Int J Mol Sci

Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Hospital, 222-1, Seongdong-Gu Wangsimni-Ro, Seoul 04763, Korea.

Published: March 2018

AI Article Synopsis

  • - Myelofibrosis (MF) is a type of blood cancer characterized by splenomegaly (enlarged spleen), often linked to extramedullary hematopoiesis (EMH) caused by abnormal clonal cell behavior in the bone marrow environment.
  • - Recent studies highlight the role of cytokines and gene mutations in splenic EMH and splenomegaly, with specific mutations correlating to larger spleen sizes and varied responses to treatment.
  • - Treatments like JAK inhibitors (e.g., ruxolitinib) have shown significant effectiveness in reducing spleen size in MF patients, despite not eliminating the underlying disease mutations.

Article Abstract

Myelofibrosis (MF) is a clinical manifestation of chronic BCR-ABL1-negative chronic myeloproliferative neoplasms. Splenomegaly is one of the major clinical manifestations of MF and is directly linked to splenic extramedullary hematopoiesis (EMH). EMH is associated with abnormal trafficking patterns of clonal hematopoietic cells due to the dysregulated bone marrow (BM) microenvironment leading to progressive splenomegaly. Several recent data have emphasized the role of several cytokines for splenic EMH. Alteration of CXCL12/CXCR4 pathway could also lead to splenic EMH by migrated clonal hematopoietic cells from BM to the spleen. Moreover, low Gata1 expression was found to be significantly associated with the EMH. Several gene mutations were found to be associated with significant splenomegaly in MF. In recent data, homozygous mutation was associated with a larger spleen size. In other data, mutations in MF were signigicantly associated with longer larger splenomegaly-free survivals than others. In addition, MF patients with ≥1 mutations in AZXL1, EZH1 or IDH1/2 had significantly low spleen reduction response in ruxolitinib treatment. Developments of JAK inhibitors, such as ruxolitinib, pacritinib, momelotinib, and febratinib enabled the effective management in MF patients. Especially, significant spleen reduction responses of the drugs were demonstrated in several randomized clinical studies, although those could not eradicate allele burdens of MF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5877759PMC
http://dx.doi.org/10.3390/ijms19030898DOI Listing

Publication Analysis

Top Keywords

clonal hematopoietic
8
hematopoietic cells
8
splenomegaly data
8
splenic emh
8
spleen reduction
8
emh
5
associated
5
understanding splenomegaly
4
splenomegaly myelofibrosis
4
myelofibrosis association
4

Similar Publications

Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.

View Article and Find Full Text PDF

The purpose of the study was to investigate the effects of exercise training on the bone marrow immune microenvironment and on minimal residual disease of multiple myeloma patients who completed first-line induction treatment. Eight multiple myeloma patients underwent 5 months of exercise training along with standard medical treatment. Eight age- and sex-matched patients who received medical treatment only, served as controls.

View Article and Find Full Text PDF

T cells, as integral components of the adaptive immune system, recognize diverse antigens through unique T cell receptors (TCRs). To achieve this, during T cell maturation, the thymus generates a wide repertoire of TCRs. This is essential for understanding cancer evolution, progression, and the efficacy of immunotherapies.

View Article and Find Full Text PDF

Folate metabolism in myelofibrosis: a missing key?

Ann Hematol

January 2025

Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, Parma, 43126, Italy.

Folates serve as key enzyme cofactors in several biological processes. Folic acid supplementation is a cornerstone practice but may have a "dark side". Indeed, the accumulation of circulating unmetabolized folic acid (UMFA) has been associated with various chronic inflammatory conditions, including cancer.

View Article and Find Full Text PDF

The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!