X-ray Computed Tomography (XCT) has become an important tool for industrial measurement and quality control through its ability to measure internal structures and volumetric defects. Segmentation of constituent materials in the volume acquired through XCT is one of the most critical factors that influence its robustness and repeatability. Highly attenuating materials such as steel can introduce artefacts in CT images that adversely affect the segmentation process, and results in large errors during quantification. This paper presents a Markov Random Field (MRF) segmentation method as a suitable approach for industrial samples with metal artefacts. The advantages of employing the MRF segmentation method are shown in comparison with Otsu thresholding on CT data from two industrial objects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130414 | PMC |
http://dx.doi.org/10.3233/XST-17322 | DOI Listing |
Sci Rep
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
A subgroup analysis of a randomized study demonstrated that patients with advanced or metastatic liposarcoma treated with eribulin had longer overall survival and progression-free survival compared to those treated with dacarbazine, suggesting eribulin as a therapeutic option for advanced liposarcoma. Therefore, this study aims to evaluate the cost-effectiveness of eribulin versus dacarbazine in the treatment of advanced liposarcoma. We established a 10-year Markov model to compare the cost-effectiveness of eribulin and dacarbazine regimens.
View Article and Find Full Text PDFGenet Epidemiol
January 2025
Interdisciplinary Program of Bioinformatics, College of Natural Science, Seoul National University, Seoul, South Korea.
In this article, we proposed a new method named fused mixed graphical model (FMGM), which can infer network structures associated with dichotomous phenotypes. FMGM is based on a pairwise Markov random field model, and statistical analyses including the proposed method were conducted to find biological markers and underlying network structures of the atopic dermatitis (AD) from multiomics data of 6-month-old infants. The performance of FMGM was evaluated with simulations by using synthetic datasets of power-law networks, showing that FMGM had superior performance for identifying the differences of the networks compared to the separate inference with the previous method, causalMGM (F1-scores 0.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA.
Inferring underlying microscopic dynamics from low-dimensional experimental signals is a central problem in physics, chemistry, and biology. As a trade-off between molecular complexity and the low-dimensional nature of experimental data, mesoscopic descriptions such as the Markovian master equation are commonly used. The states in such descriptions usually include multiple microscopic states, and the ensuing coarse-grained dynamics are generally non-Markovian.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
Computer Vision and Image Processing Lab., UofL, Louisville, KY, 40292, USA.
Purpose: This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings.
Methods: The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e.
Chaos
January 2025
Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia.
We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!