Neurogenesis occurs in a limited number of brain regions during adulthood. Of these, the hippocampus has attracted great interest due to its involvement in memory processing. Moreover, both the hippocampus and the main area that innervates this structure, namely the entorhinal cortex, show remarkable atrophy in patients with Alzheimer's disease (AD). Adult hippocampal neurogenesis is a process that continuously gives rise to newborn granule neurons in the dentate gyrus. These cells coexist with developmentally generated granule neurons in this structure, and both cooperative and competition phenomena regulate the communication between these two types of cells. Importantly, it has been revealed that GSK-3β and tau proteins, which are two of the main players driving AD pathology, are cornerstones of adult hippocampal neurogenesis regulation. We have shown that alterations either promoting or impeding the actions of these two proteins have detrimental effects on the structural plasticity of granule neurons. Of note, these impairments occur both under basal conditions and in response to detrimental and neuroprotective stimuli. Thus, in order to achieve the full effectiveness of future therapies for AD, we propose that attention be turned toward identifying the pathological and physiological actions of the proteins involved in the pathogenesis of this condition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-179918 | DOI Listing |
Front Neural Circuits
January 2025
Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, Japan.
Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.
View Article and Find Full Text PDFAlzheimers Res Ther
January 2025
Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Bd Henri Becquerel, BP 5229, Caen, 14074, France.
Background: Subclinical depressive symptoms increase the risk of developing Alzheimer's disease (AD). The neurobiological mechanisms underlying this link may involve stress system dysfunction, notably related to the hippocampus which is particularly sensitive to AD. We aimed to investigate the links between blood stress markers and changes in brain regions involved in the stress response in older adults with or without subclinical depressive symptoms.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Neurology, Second Affiliated Hospital of Army Medical University (Xinqiao Hospital), Chongqing, China.
Nat Commun
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Identifying cell types and brain regions critical for psychiatric disorders and brain traits is essential for targeted neurobiological research. By integrating genomic insights from genome-wide association studies with a comprehensive single-cell transcriptomic atlas of the adult human brain, we prioritized specific neuronal clusters significantly enriched for the SNP-heritabilities for schizophrenia, bipolar disorder, and major depressive disorder along with intelligence, education, and neuroticism. Extrapolation of cell-type results to brain regions reveals the whole-brain impact of schizophrenia genetic risk, with subregions in the hippocampus and amygdala exhibiting the most significant enrichment of SNP-heritability.
View Article and Find Full Text PDFNeuromolecular Med
December 2024
Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!