Accumulation of the peptide amyloid-β (Aβ) and the protein tau in Alzheimer's disease (AD) brains is a gradual process that involves the post-translational modification and assembly of monomeric forms into larger structures that eventually form fibrillar inclusions. This process is thought to both drive and initiate AD. However, why the axonally enriched tau in the course of AD accumulates in the somatodendritic domain is not fully understood. We discuss new data that provide a possible explanation that involves de novo protein synthesis, induced by Aβ and mediated through the kinase Fyn. We further discuss how in a pathological state, tau, being a scaffolding protein, impairs nuclear and mitochondrial functions and reduces action potential generation at the axon initial segment. Pathological tau can further be packaged into exosomes, released by one neuron and taken up by another, contributing to its pathogenicity. We also present our new work that suggests ultrasound as a new treatment modality to clear pathological Aβ and tau. We put this work into perspective, discussing current vaccination strategies and improved brain delivery methods involving antibody engineering and viral approaches. We propose that rather than reducing post-translational modifications of tau, its levels and de novo synthesis need to be reduced. We anticipate a surge in combinatorial strategies, simultaneously targeting multiple pathologies, and an improved drug delivery to the brain facilitated by emerging technologies such as ultrasound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-179907 | DOI Listing |
Clin Neuropsychol
January 2025
Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
The long-term health of former athletes with a history of multiple concussions and/or repetitive head impact (RHI) exposure has been of growing interest among the public. The true proportion of dementia cases attributable to neurotrauma and the neurobehavioral profile/sequelae of multiple concussion and RHI exposure among athletes has been difficult to determine. Across three exposure paradigms (i.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, 4193833697, Iran.
The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.
View Article and Find Full Text PDFFoods
January 2025
Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea.
Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy.
Patients with mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show abnormally high delta (<4 Hz) and low alpha (8-12 Hz) rhythms measured from resting-state eyes-closed electroencephalographic (rsEEG) activity. Here, we hypothesized that the abnormalities in rsEEG activity may be greater in ADMCI patients than in those with MCI not due to AD (noADMCI). Furthermore, they may be associated with the diagnostic cerebrospinal fluid (CSF) amyloid-tau biomarkers in ADMCI patients.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.
Alzheimer's disease (AD) poses a significant worldwide health challenge, requiring novel approaches for improved models and treatment development. This comprehensive review emphasises the systematic development and improvement of a biomimetic brain environment to address the shortcomings of existing AD models and enhance the efficiency of screening potential drug treatments. We identify drawbacks in traditional models and emphasise the necessity for more physiologically accurate systems through an in-depth analysis of current literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!