Density functional calculations were performed on the metal complexes formed during the synthesis of barium zirconate (BZY). This compound has been synthesized previously, but the molecular interactions present during the formation of the ligand-metal complexes are unknown. In this study, calculations were carried out to determine the preferred coordination sites for the metal complexes. The cations Ba2+, Y3+, and Zr4+ were modeled to interact with two deprotonated chelating agents (citric acid [CA] and ethylenediaminetetraacetic acid [EDTA]) at strategic positions. Density functional theory (DFT) at the B3LYP level of theory with basis set 6-31G* and Universal Gaussian Basis Set (UGBS) was used. The relevant geometries, binding energies, and charge distributions of the complexes are reported. It was found that both CA and EDTA can bind the metal cations investigated in this study. Metal cations prefer to form bonds at the electron-rich sites of the chelating agents. Of the three metal cations considered, Zr4+ was found to possess the strongest bonds to deprotonated CA and EDTA, followed by Y3+ and then Ba2+.

Download full-text PDF

Source

Publication Analysis

Top Keywords

density functional
12
metal cations
12
citric acid
8
ethylenediaminetetraacetic acid
8
ba2+ y3+
8
y3+ zr4+
8
functional theory
8
metal complexes
8
chelating agents
8
basis set
8

Similar Publications

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Purpose: Conventional prostate magnetic resonance imaging has limited accuracy for clinically significant prostate cancer (csPCa). We performed diffusion basis spectrum imaging (DBSI) prior to biopsy and applied artificial intelligence models to these DBSI metrics to predict csPCa.

Materials And Methods: Between February 2020 and March 2024, 241 patients underwent prostate MRI that included conventional and DBSI-specific sequences prior to prostate biopsy.

View Article and Find Full Text PDF

Prey depletion, interspecific competition, and the energetics of hunting in endangered African wild dogs, .

Proc Natl Acad Sci U S A

February 2025

Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales SA2 8PP, United Kingdom.

Large herbivores are in decline in much of the world, including sub-Saharan Africa, and true apex carnivores like the lion () decline in parallel with their prey. As a consequence, competitively subordinate carnivores like the African wild dog () are simultaneously experiencing a costly reduction in resources and a beneficial reduction in dominant competitors. The net effect is not intuitively obvious, but wild dogs' density, survival, and reproduction are all low in areas that are strongly affected by prey depletion.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!