Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9--demethylhomolycorine (IC = 30.00 ± 0.71 µM), masonine (IC = 27.81 ± 0.01 μM)}, and lycorine-types {caranine (IC = 30.75 ± 0.04 μM)}.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017564PMC
http://dx.doi.org/10.3390/molecules23040719DOI Listing

Publication Analysis

Top Keywords

glycogen synthase
12
amaryllidaceae alkaloids
8
synthase kinase-3β
8
alkaloids potential
4
glycogen
4
potential glycogen
4
kinase-3β inhibitors
4
inhibitors glycogen
4
gsk-3β
4
kinase-3β gsk-3β
4

Similar Publications

Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder characterized by impairments in social interaction, language, and communication and induction of stereotypic behavior. In rodents, prenatal administration of valproic acid (often on 12.5 gestational days) is used for the induction of an ASD-like model.

View Article and Find Full Text PDF

Due to the intensification of human activities, the ecosystems are being polluted by heavy metals. The pollution of heavy metals in agricultural systems has become a serious issue of global concern. This study detected the bioaccumulation of cadmium (Cd) in broad beans and aphids through continuous exposure to varying concentrations of Cd pollution (0, 3.

View Article and Find Full Text PDF

Upregulation of Insulin and Ecdysone Signaling in Relation to Diapause Termination in Eggs Exposed to 5 °C.

Insects

December 2024

Department of Biology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan.

In the present study, we investigated the possible correlation between insulin/ecdysone signaling and chilling-induced egg diapause termination in . Changes in () and () gene expression levels in chilled eggs (whose diapause had been terminated by chilling to 5 °C for 90 days) exhibited no significant increase after being transferred to 25 °C, which differed from both non-diapause eggs and HCl-treated eggs. We further compared the differential temporal expressions of (, -, and ), ( and ), and ( () and ()) as well as () genes between chilled eggs and eggs kept at 25 °C.

View Article and Find Full Text PDF

In Vivo and Computational Studies on Sitagliptin's Neuroprotective Role in Type 2 Diabetes Mellitus: Implications for Alzheimer's Disease.

Brain Sci

November 2024

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.

Background/objectives: Diabetes mellitus (DM), a widespread endocrine disorder characterized by chronic hyperglycemia, can cause nerve damage and increase the risk of neurodegenerative diseases such as Alzheimer's disease (AD). Effective blood glucose management is essential, and sitagliptin (SITG), a dipeptidyl peptidase-4 () inhibitor, may offer neuroprotective benefits in type 2 diabetes mellitus (T2DM).

Methods: T2DM was induced in rats using nicotinamide (NICO) and streptozotocin (STZ), and biomarkers of AD and DM-linked enzymes, inflammation, oxidative stress, and apoptosis were evaluated in the brain.

View Article and Find Full Text PDF

Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!