A photochemical strategy to encode fluorescence signals in vivo with spatial control was designed around the unique properties of a photoactivatable borondipyrromethene (BODIPY). The photoinduced disconnection of two oxazines, flanking a single BODIPY, in two consecutive steps produces a mixture of three emissive molecules with resolved fluorescence inside polymer beads. The relative amounts and emission intensities of the three fluorophores can be regulated precisely in each bead by adjusting the dose of activating photons to mark individual particles with distinct codes of fluorescence signals. The visible wavelengths and mild illumination sufficient to induce these transformations permit the photochemical barcoding of beads also in living nematodes. Different regions of the same animal can be labeled with distinct barcodes to allow the monitoring of their dynamics for long times with no toxic effects. Thus, our photochemical strategy for the generation of fluorescence barcodes can produce multiple and distinguishable labels in the same biological sample to enable the spatiotemporal tracking of, otherwise indistinguishable, targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056178 | PMC |
http://dx.doi.org/10.1021/jacs.8b00887 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
Imine-containing azaarene-based triarylmethanes are vital molecular motifs that are prevalent in a wide array of bioactive compounds. Recognizing the limitations of current synthetic methodologies─marked by a scarcity of examples and difficulties in flexible functional group modulation─we have developed an efficient and modular asymmetric photochemical strategy employing pyridotriazoles and boronic acids as substrates. Utilizing novel chiral diamine-derived pyrroles and primary amines as catalysts, we successfully synthesized a diverse range of triarylmethanes with high yields and excellent enantioselectivities.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.
View Article and Find Full Text PDFInorg Chem
January 2025
Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China.
The rapid upsurge of metal-organic frameworks (MOFs) has sparked profound interest in their potential as proton conductors for proton exchange membrane fuel cells. However, proton-conducting behaviors of hydrophobic MOFs remain poorly understood compared with their hydrophilic counterparts, largely due to the absence of a microscopic phase separation structure akin to that found in Nafion membranes. Herein, we demonstrate a strategy for regulating the structures and proton conductivities of MOFs by separately incorporating hydrophobic -C(CF)- group alongside hydrophilic -O- and -SO- groups into organic ligands as linkers.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!