A pheromone by any other gene would smell as sweet.

Mol Ecol

Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.

Published: January 2018

Reproductive isolation is the result of either the inability to produce viable and fertile offspring or the avoidance of mating altogether. While these mechanisms can evolve either over time via genetic drift or natural selection, the genetic result is usually a complex set of traits that are often linked. Explaining how reproductive isolation proceeds from the initiation of divergence to the complete prevention of mating is often a difficult task, as the underlying genes for traits associated with reproductive isolation can change via molecular evolution and subsequent protein coding alterations or through alterations of gene expression regulation. In this issue of Molecular Ecology, Treer, Maex, VanBocxlaer, Proost, and Bossuyt () use transcriptomic, proteomic and phylogenetic analyses to show that species-specific sex pheromones are the result of gradual sequence divergence on the same set of proteins in two closely related newt species (Ichthyosaura alpestris and Lissotriton helveticus). This study shows that salamander pheromone systems provide an enticing opportunity to connect the evolution of reproductive isolation to the changes in genes that underlie a key phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.14412DOI Listing

Publication Analysis

Top Keywords

reproductive isolation
16
pheromone gene
4
gene smell
4
smell sweet
4
reproductive
4
sweet reproductive
4
isolation
4
isolation result
4
result inability
4
inability produce
4

Similar Publications

After the cancellation of COVID-19 epidemic control measures in 2023, cases of pediatric bronchiolitis caused by Mycoplasma pneumoniae (MP) have been reported successively, with some children experiencing residual bronchiolitis obliterans (BO). Currently, the diagnosis of bronchiolitis Mycoplasma pneumoniae pneumonia (MPP) primarily relies on high-resolution computed tomography (HRCT). To establish a predictive model for bronchiolitis MPP, a retrospective analysis was conducted.

View Article and Find Full Text PDF

Oshmarin & Demshin, 1972 is redescribed from the posterior intestine of tropical tortoise (Gmelin, 1789) (Testudines: Geoemydidae) from China. Some characteristic features of the male reproductive system not reported previously are now reported for the present species. These include the presence of two blind diverticula near the mid-region of the seminal vesicle and a small cuticular structure near the opening of the cloaca - which we propose to name the 'scutum.

View Article and Find Full Text PDF

The effects of single chromosome number change-dysploidy - mediating diversification remain poorly understood. Dysploidy modifies recombination rates, linkage, or reproductive isolation, especially for one-fifth of all eukaryote lineages with holocentric chromosomes. Dysploidy effects on diversification have not been estimated because modeling chromosome numbers linked to diversification with heterogeneity along phylogenies is quantitatively challenging.

View Article and Find Full Text PDF

Chagas disease is one of the most important vector-borne diseases in Mexico. Triatoma pallidipennis (Stål) is one of the most epidemiologically important vector species. Despite being classified as a single species, various studies (molecular, morphometric, and biological) on populations across its distribution suggested it is composed of a group of cryptic species.

View Article and Find Full Text PDF

Most studies investigating the genomic nature of species differences anticipate monophyletic species with genome-wide differentiation. However, this may not be the case at the earliest stages of speciation where reproductive isolation is weak and homogenising gene flow blurs species boundaries. We investigate genomic differences between species in a postglacial radiation of eyebrights (Euphrasia), a taxonomically complex plant group with variation in ploidy and mating system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!