Dynamic mapping of spontaneously produced HS in the entire cell space and in live animals using a rationally designed molecular switch.

Analyst

CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China and School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China and State Key Laboratory of Transducer Technology, Hefei, Anhui 230031, China.

Published: April 2018

Hydrogen sulfide (H2S) is a key signaling molecule in the cytoprotection, vascular mediation and neurotransmission of living organisms. In-depth understanding of its production, trafficking, and transformation in cells is very important in the way H2S mediates cellular signal transductions and organism functions; it also motivates the development of H2S probes and imaging technologies. A fundamental challenge, however, is how to engineer probes with sensitivity and cellular penetrability that allow detection of spontaneous production of H2S in the entire cell space and live animals. Here, we report a rationally designed molecular switch capable of accessing all intracellular compartments, including the nucleus, lysosomes and mitochondria, for H2S detection. Our probe comprised three functional domains (H2S sensing, fluorescence, and biomembrane penetration), could enter almost all cell types readily, and exhibit a rapid and ultrasensitive response to H2S (≤120-fold fluorescence enhancement) for the dynamic mapping of spontaneously produced H2S as well as its distribution in the whole cell. In particular, the probe traversed blood/tissue/cell barriers to achieve mapping of endogenous H2S in metabolic organs of a live Danio rerio (zebrafish). These results open-up exciting opportunities to investigate H2S physiology and H2S-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/C7AN01802ADOI Listing

Publication Analysis

Top Keywords

h2s
10
dynamic mapping
8
mapping spontaneously
8
spontaneously produced
8
entire cell
8
cell space
8
space live
8
live animals
8
rationally designed
8
designed molecular
8

Similar Publications

Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.

View Article and Find Full Text PDF

Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.

View Article and Find Full Text PDF

Sulfur-containing small molecules, mainly including cysteine (Cys), homocysteine (Hcy), glutathione (GSH), and hydrogen sulfide (HS), are crucial biomarkers, and their levels in different body locations (living cells, tissues, blood, urine, saliva, ) are inconsistent and constantly changing. Therefore, it is highly meaningful and challenging to synchronously and accurately detect them in complex multi-component samples without mutual interference. In this work, we propose a steric hindrance-regulated probe, NBD-2FDCI, with single excitation dual emissions to achieve self-adaptive detection of four analytes.

View Article and Find Full Text PDF

Lead Phosphate Material for Exclusive Detection of Hydrogen Sulfide Gas.

ACS Sens

January 2025

School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China.

Efficient gas sensors that can accurately detect and identify hydrogen sulfide are essential for various practical applications. Conventional resistive sensors often lack the necessary selectivity, which hampers timely and effective HS detection. This study presents lead phosphate-based gas sensors specifically designed for HS detection, which effectively eliminate interference effects.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!