Objective: To investigate the relationship between brain volume and disability worsening over ≥3 years in the natural history of primary progressive multiple sclerosis using data from the placebo group of the INFORMS trial ( = 487; clinicaltrials.gov NCT00731692).
Methods: Magnetic resonance imaging scans were collected annually. Brain volume loss was determined using SIENA. Patients were stratified by baseline normalized brain volume after adjusting for demographic and disease-burden covariates.
Results: Baseline normalized brain volume was predictive of disability worsening: Risk of 3-month confirmed disability progression was reduced by 36% for high versus low baseline normalized brain volume (Cox's model hazard ratio 0.64, = 0.0339; log-rank test: = 0.0297). Moreover, on-study brain volume loss was significantly associated with disability worsening ( = 0.012) and was evident in patients with or without new lesions or relapses. Brain volume loss depended significantly on baseline T2 lesion volume ( < 0.0001). Despite low inflammatory activity at baseline (13% of patients had gadolinium-enhancing lesions) and throughout the study (mean 0.5 new/enlarging T2 lesions and 172 mm T2 lesion volume increase per year), baseline T2 lesion volume was substantial (mean 10 cm). Lower normalized brain volume at baseline correlated with higher baseline T2 volume and older age (both < 0.0001).
Interpretation: Baseline brain volume and the rate of ongoing brain atrophy are significantly associated with disability worsening in primary progressive multiple sclerosis. Brain volume loss is significantly related to baseline T2 lesion volume, but partially independent of new lesion activity, which might explain the limited efficacy of anti-inflammatory treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846448 | PMC |
http://dx.doi.org/10.1002/acn3.534 | DOI Listing |
Radiat Oncol
January 2025
Department of Neurosurgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
Purpose: In this retrospective study, we aimed to evaluate the efficacy and incidence of radiation-induced brain necrosis (RBN) after volumetric modulated arc therapy-based stereotactic irradiation (VMAT-STI) for brain metastases.
Methods: In the 220 brain metastatic lesions included between January 2020 and June 2022, there were 1-9 concurrently treated lesions (median 1). A biologically effective dose (BED)10 of 80 Gy and a reduced BED10 of 50 Gy were prescribed to the gross tumor volume (GTV) and planning target volume (PTV) (PTV = GTV + 3 mm) margins, respectively.
BMC Med
January 2025
Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
Background: The heterogeneity of cognitive impairments in schizophrenia has been widely observed. However, reliable cognitive boundaries to differentiate the subgroups remain elusive. The key challenge for cognitive subtyping is applying an integrated and standardized cognitive assessment and understanding the subgroup-specific neurobiological mechanisms.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China.
An increasing number of treatment guidelines recommend rapid initiation of antiretroviral therapy (ART) after the diagnosis of human immunodeficiency virus (HIV) infection. However, data on the association between rapid ART initiation and alterations in brain structure and function remain limited in people with HIV (PWH). A cross-sectional analysis was conducted on HIV-positive men who have sex with men (MSM) undergoing ART.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort.
View Article and Find Full Text PDFNat Biomed Eng
January 2025
Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!