Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Increased consumption of dietary nitrate increases plasma nitrate and nitrite concentrations, and has been shown to elicit cardio-protective effects and improve exercise performance. Nitrate consumption in the habitual diet is mainly dependent on nitrate-rich vegetables, such as green leafy and root vegetables, with total vegetable consumption accounting for approximately 50-85% of our daily nitrate intake. Whereas 'supplementation' with dietary nitrate in research studies has mainly been accomplished through the use of (concentrated) nitrate-rich beetroot juice, dietary strategies focusing on increased intake of nitrate-rich vegetables may represent a similarly effective alternative for increasing dietary nitrate intake and, as such, obtaining the associated cardiovascular health and ergogenic benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41430-018-0140-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!