Flowers of the hop plant provide both bitterness and "hoppy" flavor to beer. Hops are, however, both a water and energy intensive crop and vary considerably in essential oil content, making it challenging to achieve a consistent hoppy taste in beer. Here, we report that brewer's yeast can be engineered to biosynthesize aromatic monoterpene molecules that impart hoppy flavor to beer by incorporating recombinant DNA derived from yeast, mint, and basil. Whereas metabolic engineering of biosynthetic pathways is commonly enlisted to maximize product titers, tuning expression of pathway enzymes to affect target production levels of multiple commercially important metabolites without major collateral metabolic changes represents a unique challenge. By applying state-of-the-art engineering techniques and a framework to guide iterative improvement, strains are generated with target performance characteristics. Beers produced using these strains are perceived as hoppier than traditionally hopped beers by a sensory panel in a double-blind tasting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861129 | PMC |
http://dx.doi.org/10.1038/s41467-018-03293-x | DOI Listing |
Plant Physiol
January 2025
Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, Guizhou, China.
Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Physics, 845 W Taylor St, University of Illinois Chicago, Chicago, IL 60607, USA.
Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.
View Article and Find Full Text PDFFoods
December 2024
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually performed by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of wine yeast strains capable of both alcoholic fermentation and MLF is an important task.
View Article and Find Full Text PDFFoods
December 2024
Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
The distinctive flavor and aroma of Chinese baijiu are closely linked to the microorganisms involved in the fermentation process. , a dominant species in the fermentation of Chinese baijiu, has become a prominent research focus. In this study, we selected well-characterized pure cultures of microorganisms to construct diverse chassis microflora.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada.
Porcine blood, a significant byproduct of the pork industry, represents a potential source of antimicrobial peptides (AMPs). AMPs offer a promising alternative to chemical antimicrobials, which can be used as natural preservatives in the food industry. AMPs can exhibit both antibacterial and/or antifungal properties, thus improving food safety and addressing the growing concern of antibiotic and antifungal resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!