A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. | LitMetric

Fused deposition modelling (FDM) 3D printing has shown the most immediate potential for on-demand dose personalisation to suit particular patient's needs. However, FDM 3D printing often involves employing a relatively large molecular weight thermoplastic polymer and results in extended release pattern. It is therefore essential to fast-track drug release from the 3D printed objects. This work employed an innovative design approach of tablets with unique built-in gaps (Gaplets) with the aim of accelerating drug release. The novel tablet design is composed of 9 repeating units (blocks) connected with 3 bridges to allow the generation of 8 gaps. The impact of size of the block, the number of bridges and the spacing between different blocks was investigated. Increasing the inter-block space reduced mechanical resistance of the unit, however, tablets continued to meet pharmacopeial standards for friability. Upon introduction into gastric medium, the 1 mm spaces gaplet broke into mini-structures within 4 min and met the USP criteria of immediate release products (86.7% drug release at 30 min). Real-time ultraviolet (UV) imaging indicated that the cellulosic matrix expanded due to swelling of hydroxypropyl cellulose (HPC) upon introduction to the dissolution medium. This was followed by a steady erosion of the polymeric matrix at a rate of 8 μm/min. The design approach was more efficient than a comparison conventional formulation approach of adding disintegrants to accelerate tablet disintegration and drug release. This work provides a novel example where computer-aided design was instrumental at modifying the performance of solid dosage forms. Such an example may serve as the foundation for a new generation of dosage forms with complicated geometric structures to achieve functionality that is usually achieved by a sophisticated formulation approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2018.03.019DOI Listing

Publication Analysis

Top Keywords

drug release
20
design approach
12
disintegration drug
8
release printed
8
fdm printing
8
formulation approach
8
dosage forms
8
release
7
design
5
approach
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!