Hypofunction of NMDA receptors in parvalbumin (PV)-positive interneurons has been proposed as a potential mechanism for cortical abnormalities and symptoms in schizophrenia. GluN2C-containing receptors have been linked to this hypothesis due to the higher affinity of psychotomimetic doses of ketamine for GluN1/2C receptors. However, the precise cell-type expression of GluN2C subunit remains unknown. We describe the expression of the GluN2C subunit using a novel EGFP reporter model. We observed EGFP(GluN2C) localization in PV-positive neurons in the nucleus reticularis of the thalamus, globus pallidus externa and interna, ventral pallidum and substantia nigra. In contrast, EGFP(GluN2C)-expressing cells did not co-localize with PV-positive neurons in the cortex, striatum, hippocampus or amygdala. Instead, EGFP(GluN2C) expression in these regions co-localized with an astrocytic marker. We confirmed functional expression of GluN2C-containing receptors in the PV-neurons in substantia nigra and cortical astrocytes using electrophysiology. GluN2C was found to be enriched in several first-order and higher order thalamic nuclei. Interestingly, we found that a previous GluN2C β-gal reporter model excluded expression from PV-neurons and certain thalamic nuclei but exhibited expression in the retrosplenial cortex. GluN2C's unique distribution in neuronal and non-neuronal cells in a brain region-specific manner raises interesting questions regarding the role of GluN2C-containing receptors in the central nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086378PMC
http://dx.doi.org/10.1016/j.neuroscience.2018.03.011DOI Listing

Publication Analysis

Top Keywords

glun2c subunit
12
reporter model
12
glun2c-containing receptors
12
expression glun2c
8
pv-positive neurons
8
substantia nigra
8
thalamic nuclei
8
expression
7
glun2c
6
receptors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!