A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The synergistic fungicidal effect of low-frequency and low-intensity ultrasound with amphotericin B-loaded nanoparticles on C. albicans in vitro. | LitMetric

It is difficult to effectively eradicate C. albicans using traditional antifungal agents, mainly because the low permeability of the C. albicans cell wall creates strong drug resistance. The aim of this study was to investigate the synergistic fungicidal effect and the underlying mechanisms of low-frequency and low-intensity ultrasound combined with a treatment of amphotericin B-loaded nanoparticles (AmB-NPs) against C. albicans. AmB-NPs were prepared by a poly(lactic-co-glycolic acid) (PLGA) double emulsion method. C. albicans was treated by AmB-NPs combined with 42 kHz ultrasound irradiation at an intensity of 0.30 W/cm for 15 min. The results demonstrate that the application of ultrasound enhanced the antibacterial effectiveness of AmB-NPs (P < 0.01), and the antifungal efficiency increased significantly with increasing AmB concentration of drug-loaded nanoparticles under ultrasonic irradiation. Additionally, the mycelial morphology of C. albicans suffered from the most severe damage and loss of normal microbial morphology after the combined treatment of AmB-NPs and ultrasound, as revealed by electron microscope. Furthermore, we verified the safe use of low-frequency ultrasound on exposed skin and discussed the potential mechanism of ultrasound enhanced fungicidal activity. The results reveal that the mechanism may be associated with the ultrasound cavitation effect and an increase in intracellular reactive oxygen species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.03.033DOI Listing

Publication Analysis

Top Keywords

synergistic fungicidal
8
low-frequency low-intensity
8
low-intensity ultrasound
8
amphotericin b-loaded
8
b-loaded nanoparticles
8
albicans
5
fungicidal low-frequency
4
ultrasound
4
ultrasound amphotericin
4
nanoparticles albicans
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!