Comparative Analysis of Surface Layer Glycoproteins and Genes Involved in Protein Glycosylation in the Genus Haloferax.

Genes (Basel)

School of Molecular and Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Published: March 2018

Within the genus, both the surface (S)-layer protein, and the glycans that can decorate it, vary between species, which can potentially result in many different surface types, analogous to bacterial serotypes. This variation may mediate phenotypes, such as sensitivity to different viruses and mating preferences. Here, we describe S-layer glycoproteins found in multiple strains and perform comparative genomics analyses of major and alternative glycosylation clusters of isolates from two coastal sites. We analyze the phylogeny of individual glycosylation genes and demonstrate that while the major glycosylation cluster tends to be conserved among closely related strains, the alternative cluster is highly variable. Thus, geographically- and genetically-related strains may exhibit diverse surface structures to such an extent that no two isolates present an identical surface profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867893PMC
http://dx.doi.org/10.3390/genes9030172DOI Listing

Publication Analysis

Top Keywords

surface
5
comparative analysis
4
analysis surface
4
surface layer
4
layer glycoproteins
4
glycoproteins genes
4
genes involved
4
involved protein
4
glycosylation
4
protein glycosylation
4

Similar Publications

Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.

View Article and Find Full Text PDF

Background: Shake flasks are essential tools in biotechnological development due to their cost efficiency and ease of use. However, a significant challenge is the miniaturization of process analytical tools to maximize information output from each cultivation. This study aimed to develop a respiration activity online measurement system via off-gas analysis, named "Transfer rate Online Measurement" (TOM), for determining the oxygen transfer rate (OTR), carbon dioxide transfer rate (CTR), and the respiration quotient (RQ) in surface-aerated bioreactors, primarily targeting shake flasks.

View Article and Find Full Text PDF

Background: Recent studies revealed an association between small kidney volume and progression of kidney dysfunction in particular settings such as kidney transplantation and transcatheter aortic valve implantation. We hypothesized that kidney volume was associated with the incidence of kidney-related adverse outcomes such as worsening renal function (WRF) in patients with acute heart failure (AHF).

Methods: This study was a single-center retrospective cohort study.

View Article and Find Full Text PDF

Background: While prosthesis-associated malignancies have been acknowledged, awareness among surgeons and patients in the ophthalmologic field remains limited, despite the frequent occurrence of prosthesis-related surgeries. We aim to address this gap through a scoping review of malignancies following ophthalmologic surgeries involving various foreign device/prosthesis/implants.

Methods: Following PRISMA guidelines, we conducted a review using PubMed and Embase for studies on cancer and ophthalmic prostheses/implants.

View Article and Find Full Text PDF

Mechanistic Insights into the Aerobic Oxidation of 2,5-Bis(hydroxymethyl)furfural to 2,5-Furandicarboxylic Acid on Pd Catalysts.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.

2,5-Furandicarboxylic acid (FDCA) is one of the top selected value-added chemicals, which can be obtained by the aerobic oxidation of 2,5-bis(hydroxymethyl)furfural (BHMF) over a Pd-based catalyst. However, the elucidation of the reaction mechanism was hindered by its rapid kinetics. Herein, employing the density functional theory (DFT) calculations, we delve into the detailed reaction pathways of the BHMF oxidation into FDCA over Pd(111) and PdH(111) identifying the rate-determining steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!