Nanoparticles synthesized from plasmonic metals can absorb low-energy light, producing an oscillation/excitation of their valence electron density that can be utilized in chemical conversions. For example, heterogeneous photocatalysis can be achieved within heterometallic antenna-reactor complexes (HMARCs), by coupling a reactive center at which a chemical reaction occurs to a plasmonic nanoparticle that acts as a light-absorbing antenna. For example, HMARCs composed of aluminum antennae and palladium (Pd) reactive centers have been demonstrated recently to catalyze selective hydrogenation of acetylene to ethylene. Here, we explore within a theoretical framework the rate-limiting step of hydrogen photodesorption from a Pd surface-crucial to achieving partial rather than full hydrogenation of acetylene-to understand the mechanism behind the photodesorption process within the HMARC assembly. To properly describe electronic excited states of the metal-molecule system, we employ embedded complete active space self-consistent field and n-electron valence state perturbation theory to second order within density functional embedding theory. The results of these calculations reveal that the photodesorption mechanism does not create a frequently invoked transient negative ion species but instead enhances population of available excited-state, low-barrier pathways that exhibit negligible charge-transfer character.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b00352DOI Listing

Publication Analysis

Top Keywords

mechanistic insights
4
insights photocatalyzed
4
photocatalyzed hydrogen
4
hydrogen desorption
4
desorption palladium
4
palladium surfaces
4
surfaces assisted
4
assisted localized
4
localized surface
4
surface plasmon
4

Similar Publications

Mechanistic insights and approaches for beta cell regeneration.

Nat Chem Biol

January 2025

Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.

Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms.

View Article and Find Full Text PDF

Amyloid capture and aggregation inhibition by human serum albumin.

Int J Biol Macromol

January 2025

Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain. Electronic address:

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) aggregation, primarily involving the peptides Aβ40 and Aβ42. Human serum albumin (HSA) has emerged as a potential therapeutic agent due to its ability to bind Aβ, inhibit aggregation, and promote disaggregation. This study quantitatively examined the interactions of HSA with both monomeric and aggregated forms of Aβ40 and Aβ42 using fluorescence techniques, including bulk steady-state fluorescence, fluorescence anisotropy, time-resolved fluorescence, and Fluorescence Correlation Spectroscopy (FCS).

View Article and Find Full Text PDF

Aims: Polycystic ovary syndrome (PCOS) is closely associated with metabolic disorders such as insulin resistance and obesity, but the role of adipogenesis in its pathophysiology remains unclear. This study investigates the role of adipogenesis in PCOS development and evaluates whether hyperoside (HPS), an anti-adipogenic herbal compound, can improve PCOS by inhibiting adipogenesis.

Main Methods: A combination of in vivo and in vitro models was used to assess the impact of HPS on ovarian function, insulin resistance, and adipogenesis.

View Article and Find Full Text PDF

MarE, a heme-dependent enzyme, catalyzes a unique 2-oxindole-forming monooxygenation reaction from tryptophan metabolites. To elucidate its enzyme-substrate interaction mode, we present the first X-ray crystal structures of MarE in complex with its prime substrate, (2S,3S)-β-methyl-L-tryptophan and cyanide at 1.89 Å resolution as well as a truncated yet catalytically active version in complex with the substrate at 2.

View Article and Find Full Text PDF

Outer dynein arms (ODAs) are essential for ciliary motility and are preassembled in the cytoplasm before trafficking into cilia by intraflagellar transport (IFT). ODA16 is a key adaptor protein that links ODAs to the IFT machinery via a direct interaction with the IFT46 protein. However, the molecular mechanisms regulating the assembly, transport, and release of ODAs remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!