Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H-SiC.

J Phys Condens Matter

Department of Physics, University of Pretoria, Pretoria 0002, South Africa. Department of Mathematical and Physical Sciences, Samuel Adegboyega University, Ogwa, Edo State, Nigeria.

Published: May 2018

Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H-SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H-SiC are presented. We explore complexes where substitutional N[Formula: see text]/N[Formula: see text] or B[Formula: see text]/B[Formula: see text] sits near a Si (V[Formula: see text]) or C (V[Formula: see text]) vacancy to form vacancy-complexes (N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], N[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text], B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text]). The energies of formation of the N related vacancy-complexes showed the N[Formula: see text]V[Formula: see text] to be energetically stable close to the valence band maximum in its double positive charge state. The N[Formula: see text]V[Formula: see text] is more energetically stable in the double negative charge state close to the conduction band minimum. The N[Formula: see text]V[Formula: see text] on the other hand, induced double donor level and the N[Formula: see text]V[Formula: see text] induced a double acceptor level. For B related complexes, the B[Formula: see text]V[Formula: see text] and B[Formula: see text]V[Formula: see text] were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the B[Formula: see text]V[Formula: see text] become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aab819DOI Listing

Publication Analysis

Top Keywords

text]v[formula text]
60
n[formula text]v[formula
32
b[formula text]v[formula
28
text] b[formula
24
text]
19
charge state
16
text]v[formula
15
energy levels
12
text] n[formula
12
text] energetically
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!