Beyond Compliance Checking: A Situated Approach to Visual Research Ethics.

J Bioeth Inq

Health, Rights and Development (HEARD@UNSW), School of Social Sciences, University of New South Wales, Sydney, Australia.

Published: June 2018

Visual research methods like photography and digital storytelling are increasingly used in health and social sciences research as participatory approaches that benefit participants, researchers, and audiences. Visual methods involve a number of additional ethical considerations such as using identifiable content and ownership of creative outputs. As such, ethics committees should use different assessment frameworks to consider research protocols with visual methods. Here, we outline the limitations of ethics committees in assessing projects with a visual focus and highlight the sparse knowledge on how researchers respond when they encounter ethical challenges in the practice of visual research. We propose a situated approach in relation to visual methodologies that encompasses a negotiated, flexible approach, given that ethical issues usually emerge in relation to the specific contexts of individual research projects. Drawing on available literature and two case studies, we identify and reflect on nuanced ethical implications in visual research, like tensions between aesthetics and research validity. The case studies highlight strategies developed in-situ to address the challenges two researchers encountered when using visual research methods, illustrating that some practice implications are not necessarily addressed using established ethical clearance procedures. A situated approach can ensure that visual research remains ethical, engaging, and rigorous.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11673-018-9850-0DOI Listing

Publication Analysis

Top Keywords

visual methods
16
situated approach
12
visual
10
ethics committees
8
case studies
8
ethical
6
compliance checking
4
checking situated
4
approach
4
approach visual
4

Similar Publications

The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.

View Article and Find Full Text PDF

A conformational switch-controlled RNA sensor based on orthogonal dCas12a for RNA imaging in live cells.

Biosens Bioelectron

January 2025

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:

RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.

View Article and Find Full Text PDF

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.

View Article and Find Full Text PDF

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!