Metabolite profiling is an important tool that may better capture the multiple features of neurodegeneration. With the considerable parallels between mouse and human metabolism, the use of metabolomics in mouse models with neurodegenerative pathology provides mechanistic insight and ready translation into aspects of human disease. Using 400 MHz nuclear magnetic resonance spectroscopy we have carried out a temporal region-specific investigation of the metabolome of neuron-specific 26S proteasome knockout mice characterised by progressive neurodegeneration and Lewy-like inclusion formation in the forebrain. An early significant decrease in N-acetyl aspartate revealed evidence of neuronal dysfunction before cell death that may be associated with changes in brain neuroenergetics, underpinning the use of this metabolite to track neuronal health. Importantly, we show early and extensive activation of astrocytes and microglia in response to targeted neuronal dysfunction in this context, but only late changes in myo-inositol; the best established glial cell marker in magnetic resonance spectroscopy studies, supporting recent evidence that additional early neuroinflammatory markers are needed. Our results extend the limited understanding of metabolite changes associated with gliosis and provide evidence that changes in glutamate homeostasis and lactate may correlate with astrocyte activation and have biomarker potential for tracking neuroinflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859111PMC
http://dx.doi.org/10.1038/s41598-018-23155-2DOI Listing

Publication Analysis

Top Keywords

26s proteasome
8
magnetic resonance
8
resonance spectroscopy
8
neuronal dysfunction
8
dynamic metabolic
4
metabolic patterns
4
patterns tracking
4
tracking neurodegeneration
4
neurodegeneration gliosis
4
gliosis 26s
4

Similar Publications

Light is a major determinant of plant growth and survival. NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) acts as a receptor for salicylic acid (SA) and serves as the key regulator of SA-mediated immune responses. However, the mechanisms by which plants integrate light and SA signals in response to environmental changes, as well as the role of NPR1 in regulating plant photomorphogenesis, remain poorly understood.

View Article and Find Full Text PDF

Role of ubiquitin-proteasome pathway in budded virus egress and GP64 surface distribution in Bombyx mori nucleopolyhedrovirus.

J Gen Virol

December 2024

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.

The Bombyx mori nucleopolyhedrovirus (BmNPV) is a DNA virus that affects the silkworm, , causing substantial economic losses in sericulture. This study investigates the mechanisms underlying budded virus egress, focusing on the roles of the ubiquitin-proteasome pathway (UPP) machinery. BmNPV produces two virion types: budded virions (BVs) and occlusion-derived virions (ODVs), which differ in their envelope origins and functions.

View Article and Find Full Text PDF

DNA-protein crosslinks (DPCs) are endogenous and chemotherapy-induced genotoxic DNA lesions and, if not repaired, lead to embryonic lethality, neurodegeneration, premature ageing, and cancer. DPCs are heavily polyubiquitinated, and the SPRTN protease and 26S proteasome emerged as two central enzymes for DPC proteolysis. The proteasome recognises its substrates by their ubiquitination status.

View Article and Find Full Text PDF

FolSas2 is a regulator of early effector gene expression during Fusarium oxysporum infection.

New Phytol

December 2024

Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.

Fusarium oxysporum f. sp. lycopersici (Fol) that causes a globally devastating wilt disease on tomato relies on the secretion of numerous effectors to mount an infection, but how the pathogenic fungus precisely regulates expression of effector genes during plant invasion remains elusive.

View Article and Find Full Text PDF

The E3 ubiquitin ligase TaGW2 facilitates TaSnRK1γ and TaVPS24 degradation to enhance stripe rust susceptibility in wheat.

Plant Biotechnol J

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.

Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), threatens global wheat production, and therefore discovering genes involved in stripe rust susceptibility is essential for balancing yield with disease resistance in sustainable breeding strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!