Stress responsive mitochondrial proteins in Arabidopsis thaliana.

Free Radic Biol Med

Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.

Published: July 2018

In the last decade plant mitochondria have emerged as a target, sensor and initiator of signalling cascades to a variety of stress and adverse growth conditions. A combination of various 'omic profiling approaches combined with forward and reverse genetic studies have defined how mitochondria respond to stress and the signalling pathways and regulators of these responses. Reactive oxygen species (ROS)-dependent and -independent pathways, specific metabolites, complex I dysfunction, and the mitochondrial unfolded protein response (UPR) pathway have been proposed to date. These pathways are regulated by kinases (sucrose non-fermenting response like kinase; cyclin dependent protein kinase E 1) and transcription factors from the abscisic acid-related, WRKY and NAC families. A number of independent studies have revealed that these mitochondrial signalling pathways interact with a variety of phytohormone signalling pathways. While this represents significant progress in the last decade there are more pathways to be uncovered. Post-transcriptional/translational regulation is also a likely determinant of the mitochondrial stress response. Unbiased analyses of the expression of genes encoding mitochondrial proteins in a variety of stress conditions reveal a modular network exerting a high degree of anterograde control. As abiotic and biotic stresses have significant impact on the yield of important crops such as rice, wheat and barley we will give an outlook of how knowledge gained in Arabidopsis may help to increase crop production and how emerging technologies may contribute.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.031DOI Listing

Publication Analysis

Top Keywords

signalling pathways
12
mitochondrial proteins
8
variety stress
8
pathways
6
stress
5
mitochondrial
5
stress responsive
4
responsive mitochondrial
4
proteins arabidopsis
4
arabidopsis thaliana
4

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!