The HtrA protease of Helicobacter pylori, which efficiently colonizes at the gastric epithelial of host cells, disrupts the mucosal integrity of E-cadherin and spreads inflammatory diseases including gastric cancer by cleaving the cell-cell adhesion of the host. The lack of knowledge on the molecular diversity, structural and functional behavior of HpHtrA necessitated the present study to explore its inhibition mechanism. At first, the similarity of HpHtrA with other gastro-intestinal pathogenic HtrA bacteria and its remote relationship with the Human HtrA homologs were ensured by the phylogenetic analysis and hence was identified as a novel therapeutic target for further design of inhibitors. The three dimensional structure of HpHtrA was modeled and simulated to achieve its stable conformation and was used as a receptor to screen for the possible lead compound through virtual screening (using ∼ 1.3 million compounds). Molecular dynamics simulations followed by the binding energy analysis revealed the affinity of the compound 300040 in forming a stable complex with HpHtrA and thereby revealed its potent role in inhibiting HpHtrA. It is also worthy to mention that, structurally, the ligand binding at the catalytic site of HpHtrA is mainly facilitated by the significant dynamics of L2 loop. Based on the present study, the hydroxyl-piperidine with 4-aminopiperidine scaffold is proposed to be one of the best possible lead compounds for the inhibition of H. pylori.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2018.03.027 | DOI Listing |
Transl Psychiatry
January 2025
Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
Long-term potentiation (LTP) and long-term depression (LTD) are widely used to study synaptic plasticity. However, whether proteins regulating LTP and LTD are altered in cognitive disorders and contribute to disease onset remains to be determined. Herein, we induced LTP and LTD in the hippocampal CA3-CA1 Schaffer collateral pathway, respectively, and then performed proteomic analysis of the CA1 region.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
Proteolytic enzymes play key roles in living organisms. Because of their potentially destructive action of degrading other proteins, their activity must be very tightly controlled. The evolutionarily conserved proteins of the HtrA family are an excellent example illustrating strategies for regulating enzymatic activity, enabling protease activation in response to an appropriate signal, and protecting against uncontrolled proteolysis.
View Article and Find Full Text PDFMol Divers
November 2024
Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600 025, India.
HtrA protein is a member of a serine protease family with dual functions as a protease and molecular chaperone. It is a virulence factor in many bacteria, including the food-borne pathogen Listeria monocytogenes (Lm), which induces listeriosis in humans. Hence, inhibitors of LmHtrA protease have great importance in the control of infection.
View Article and Find Full Text PDFJ Biol Chem
November 2024
Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany. Electronic address:
Members of the widely conserved high temperature requirement A (HtrA) family of serine proteases are involved in multiple aspects of protein quality control. In this context, they have been shown to efficiently degrade misfolded proteins or protein fragments. However, recent reports suggest that folded proteins can also be native substrates.
View Article and Find Full Text PDFPLoS Genet
August 2024
Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.
Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!