Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The action of direct sonication (US) versus conventional hydrothermal method (HY) was investigated to determine the differences in the crystallization mechanism of zeolite formed from fly ash. The results showed that ultrasonic energy is decisive in very fast faujasite and A-type zeolite transformation into more stable sodalite phase. The data display the main presence of sodalite together with a low amount of faujasite and zeolite A after the first 3 h of sonication. The full transformation of the latter two phases into sodalite takes place after 1 h more of treatment. The samples incubated by hydrothermal process for 3 h, instead, are characterized by the main presence of faujasite and A-type zeolites. The progressive synthesis of sodalite at the expense of the other two phases begins only after 4 h of treatment. The conclusion is that the crystallization of zeolites by ultrasonic and hydrothermal method proceeds via two different mechanisms. The data also show that the two approaches affect the stability of the synthetic products in a different way over the years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2017.12.050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!