A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrasound-assisted synthesis of YbVO nanostructure and YbVO/CuWO nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. | LitMetric

YbVO nanostructure and YbVO/CuWO nanocomposites were successfully synthesized using sonochemical method, for the first time. In this disquisition, we tried to compare various parameters and reaction conditions on size, morphology, and uniformity of as-obtained samples. To reach optimum condition, some parameters including time, power, temperature, and solvent were investigated. The structural, morphological, optical, and magnetic properties of as-obtained products were characterized by some techniques such as FT-IR, XRD, EDS, SEM, TEM, UV-Vis, and VSM. Furthermore, due to occurrence of red shift in nonanocomposite, during the coupling of CuWO into YbVO, photocatalytic and optical properties of final products were improved which lead to improve photo-destruction efficiency for methylene blue from 65% to 100%, during 120 min irradiation. The effect of the ultrasonic radiation on the photocatalytic behavior of YbVO/CuWO shows that methylene blue pollutant destruction was about 100% with ultrasonic wave and 61% in the absence of ultrasonic radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2017.11.040DOI Listing

Publication Analysis

Top Keywords

ybvo nanostructure
8
nanostructure ybvo/cuwo
8
ybvo/cuwo nanocomposites
8
methylene blue
8
ultrasonic radiation
8
ultrasound-assisted synthesis
4
synthesis ybvo
4
nanocomposites enhanced
4
enhanced photocatalytic
4
photocatalytic degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!