This paper presents a new model to simulate long-term microbial removal in stormwater biofilters. The water flow module uses a 'three-bucket' approach to describe the flow processes in biofilters, while the microbial quality module employs the one-dimensional advection-dispersion equation to represent microbial transport and fate under different design and operational conditions. Three governing processes for microbial removal, adsorption, desorption and die-off, are included; temperature is also incorporated as a key factor for die-off. The model was tested using long term monitoring data collected from laboratory columns in which five different biofilter configurations were studied over a period of 44weeks. A multi-objective calibration with the balance of instantaneous ponding levels and event outflow volumes was implemented on the water flow module, and the Nash-Sutcliffe Efficiency (E) values ranged from 0.82 to 0.95. The microbial quality module was tested using the effluent Escherichia coli concentration data, and the E values obtained for different configurations were between 0.46 and 0.68. The optimized parameter values agreed with those presented in literature. However, sensitivity analyses suggested that the model's prediction was not sensitive to all parameters, the explanation for which was hypothesized to be data paucity rather than model structural uncertainties. Model validation was also conducted by splitting the data into calibration and validation datasets. The results further reinforced the needed for more data for model calibration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.02.193 | DOI Listing |
iScience
December 2024
Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235 West Bengal, India.
This study develops a graphene oxide-nano zerovalent iron (GO-nZVI) composite for the efficient removal of tetracycline and ciprofloxacin from water. The composite was synthesized using sugarcane bagasse as the matrix for graphene oxide (GO) and Sal leaf extract to reduce iron into nano zerovalent iron (nZVI). Microscopic analysis confirmed multiple GO layers with nZVI particles on their surface, while XRD and Raman spectroscopy verified the crystalline nature of the composite.
View Article and Find Full Text PDFHybrid Adv
December 2024
Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India.
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in the environment that are formed as an outcome of partial combustion of organic matter. PAHs pose a significant threat to ecological systems and human health due to their cytotoxic and genotoxic effects. Therefore, an immediate need for effective PAH remediation methods is crucial.
View Article and Find Full Text PDFACS Omega
December 2024
College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China.
In this study, a recirculating aquaculture system (RAS) was constructed, and a denitrification bioreactor was installed to enhance nitrogen removal. In addition, the nitrogen removal performance of the system was investigated. FeS was prepared by calcining iron (Fe) and S powder, which was used as an electron donor for denitrification.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana 122413, India. Electronic address:
Climate change, the overconsumption of fossil fuels, and rapid population and economic growth have collectively driven a growing emphasis on environmental sustainability and the need for effective resource management. Chemicals or materials not currently regulated are known as contaminants of emergent concern (CECs). Nevertheless, wastewater is thought to be its main source, and worries about its probable presence in the environment are growing due to its potential damage to human and environmental health.
View Article and Find Full Text PDFSci Total Environ
January 2025
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile.
Nitrogen contamination of water sources poses significant environmental and health risks. The sulfur-driven simultaneous nitrification and autotrophic denitrification (SNAD) process offers a cost-effective solution, as it operates in a single reactor, requires no organic carbon addition, and produces minimal sludge. However, this process remains underexplored, with microbial population dynamics, their interactions, and their implications for process efficiency not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!