The activity of NiP catalysts for the hydrogen evolution reaction (HER) is currently limited by strong H adsorption at the Ni-hollow site. We investigate the effect of surface nonmetal doping on the HER activity of the NiP termination of NiP(0001), which is stable at modest electrochemical conditions. Using density functional theory (DFT) calculations, we find that both 2 p nonmetals and heavier chalcogens provide nearly thermoneutral H adsorption at moderate surface doping concentrations. We also find, however, that only chalcogen substitution for surface P is exergonic. For intermediate surface concentrations of S, the free energy of H adsorption at the Ni-hollow site is -0.11 eV, which is significantly more thermoneutral than the undoped surface (-0.45 eV). We use the regularized random forest machine learning algorithm to discover the relative importance of structure and charge descriptors, extracted from the DFT calculations, in determining the HER activity of NiP(0001) under different doping concentrations. We discover that the Ni-Ni bond length is the most important descriptor of HER activity, which suggests that the nonmetal dopants induce a chemical pressure-like effect on the Ni-hollow site, changing its reactivity through compression and expansion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b00947DOI Listing

Publication Analysis

Top Keywords

activity nip
12
ni-hollow site
12
surface doping
8
machine learning
8
adsorption ni-hollow
8
dft calculations
8
doping concentrations
8
surface
6
activity
5
chemical pressure-driven
4

Similar Publications

Successive Reactions of Trimethylgermanium Chloride to Achieve > 26% Efficiency MA-Free Perovskite Solar Cell With 3000-Hour Unattenuated Operation.

Adv Mater

December 2024

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

The rapidly increased efficiency of perovskite solar cells (PSCs) indicates their broad commercial prospects, but the commercialization of perovskite faces complex optimization processes and stability issues. In this work, a simple optimized strategy is developed by the addition of trimethylgermanium chloride (TGC) into FACsPbI precursor solution. TGC triggers the successive interactions in perovskite solution and film, involving the hydrolysis of vulnerable Ge─Cl bond forming Ge─OH group, then forming the hydrogen bonds (O─H···N and O─H···I) with FAI.

View Article and Find Full Text PDF

Electron transfer enhanced flower-like NiP-MoP heterostructure synergistically accelerates fast HER kinetics for large-current overall water splitting.

J Colloid Interface Sci

December 2024

Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China. Electronic address:

Article Synopsis
  • Researchers developed a new metal-phosphorus heterostructure (NiP-MoP@NF) that enhances hydrogen evolution reactions (HER) for efficient water electrolysis.
  • This structure combines nickel and molybdenum phosphides on nickel foam using a controlled strategy that optimizes electronic properties and increases active sites.
  • The resulting electrocatalyst shows impressive performance and stability, outperforming traditional options like Pt/C, suggesting high potential for industrial water electrolysis applications.
View Article and Find Full Text PDF

Replacing the oxygen evolution reaction with the alternative glycerol electro-oxidation reaction (GER) provides a promising strategy to enhance the efficiency of hydrogen production via water electrolysis while co-generating high-value chemicals. However, obtaining low-cost and efficient GER electrocatalysts remains a big challenge. Herein, a self-supported N-doped CoNiO nanoflakes (N-CoNiO NF) is proposed for efficient electrocatalytic oxidation of glycerol to formate.

View Article and Find Full Text PDF

Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer. To resolve genome dysregulation associated with HPV integration, we performed Oxford Nanopore long-read sequencing on 72 cervical cancer genomes from an Ugandan dataset that was previously characterized using short-read sequencing. We found recurrent structural rearrangement patterns at HPV integration events, which we categorized as: del(etion)-like, dup(lication)-like, translocation, multibreakpoint, or repeat region integrations.

View Article and Find Full Text PDF

The two-electron oxygen reduction reaction (2e ORR) for electrochemical hydrogen peroxide (HO) synthesis has drawn much attention due to its eco-friendly, cost-effective, and highly efficient properties. Developing catalysts with excellent HO production rates and selectivity is still a big challenge. In this work, an iron-doped nickel phosphide (Fe-Ni-P) catalyst was synthesized by a solvent thermal method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!