In this study, we investigated the effect of light irradiation and primer/adhesive application on the polymerization reaction and elastic modulus (E) of self-adhesive resin cement (SAC) through ultrasonic velocity (V) measurements. The V values of longitudinal and shear waves were determined based on the transit time through the specimens and specimen thicknesses, and were used to calculate the E values. Analysis of variance and Tukey tests revealed that V increased rapidly, reaching a plateau at 2,700-2,900 m/s, when the SACs were light-irradiated. However, the increasing rate of V was retarded for the non-irradiated SACs. In addition, when the primer/adhesive was applied, higher E values were obtained after 24 h. Finally, the polymerization behavior of the SACs was affected by light irradiation and primer application, and the use of prime/adhesive might improve mechanical properties. In clinical situations, use of primer/adhesive is recommended for getting proper adhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4012/dmj.2017-215 | DOI Listing |
Chem Biomed Imaging
December 2024
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process.
View Article and Find Full Text PDFHeliyon
December 2024
Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Public Health, Guangzhou Medical University, Guangzhou 511436, China. Electronic address:
The burden of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its oxidized products on human health can no longer be ignored due to the detection types and concentrations in the environment continue to increase. Environmental ozone (O) and ultraviolet A (UVA) may induce ozonation and photoaging of 6PPD to produce toxic products. However, the impact of specific environmental conditions on the aging and toxic effects of 6PPD is unclear.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Electronic Engineering, Laboratory of Micro/Nano-Optoelectronics, Xiamen University, Xiamen, Fujian 361005, China; Institute of Nanoscience and Applications (INA), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
Managing undesirable biofilms is a persistent challenge in water treatment and distribution systems. Although ultraviolet-light emitting diode (UV-LED) irradiation, an emerging disinfection method with the chemical-free and emission-adjustable merits, has been widely reported effective to inactivate planktonic bacteria, few studies have examined its effects on biofilms. This study aims to fill this gap by exploring the performance and mechanism of UV-LEDs on the prefabricated Escherichia coli (E.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
December 2024
Department of Physics, Lovely Professional University, Phagwara, India.
Aim: To study the dosimetric behavior of dose computational algorithms in inhomogeneous medium using CMS XiO and MONACO treatment planning system (TPS) for 4 megavoltage (MV), 6 MV and 15 MV photon beam energies.
Material And Methods: Styrofoam blocks of thickness 1.90 cm, 3.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!