A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Low dose of triptolide ameliorates podocyte epithelial-mesenchymal transition induced by high dose of D-glucose via inhibiting Wnt3α/β-catenin signaling pathway activation]. | LitMetric

AI Article Synopsis

  • - The study investigates how triptolide (TP) affects podocyte epithelial-mesenchymal transition (EMT) caused by high doses of D-glucose, using immortalized mouse podocytes divided into five treatment groups.
  • - Results showed that high D-glucose levels lead to decreased expression of nephrin and podocin (epithelial markers) and increased levels of desmin, collagen I, and snail (mesenchymal markers), indicating that EMT occurred, along with activation of the Wnt3a/β-catenin signaling pathway.
  • - Treatment with low-dose TP (L-TP) along with high D-glucose (HG) helped restore nephrin and podocin levels and reduce mesenchymal markers

Article Abstract

To explore the effects and molecular mechanisms of triptolide(TP)on improving podocyte epithelial-mesenchymal transition(EMT)induced by high dose of D-glucose(HG), the immortalized podocytes of mice were divided into the normal group(N), the high dose of D-glucose group(HG), the low dose of TP group(L-TP), the high dose of TP group(H-TP)and the mannitol group(MNT), and treated by the different measures respectively. More specifically, the podocytes in each group were separately treated by D-glucose(DG, 5 mmol·L⁻¹)or HG(25 mmol·L⁻¹)or HG(25 mmol·L⁻¹)+ TP(3 μg·L⁻¹)or HG(25 mmol·L⁻¹)+ TP(10 μg·L⁻¹)or DG(5 mmol·L⁻¹)+ MNT(24.5 mmol·L⁻¹). After the intervention for 24, 48 and 72 hours, firstly, the activation of podocyte proliferation was investigated. Secondly, the protein expression levels of the epithelial markers in podocytes such as nephrin and podocin, the mesenchymal markers such as desmin and collagen Ⅰ and the EMT-related mediators such as snail were detected respectively. Finally, the protein expression levels of Wnt3α and β-catenin as the key signaling molecules in Wnt3α/β-catenin pathway were examined severally. The results indicated that, HG could cause the low protein expression levels of nephrin and podocin and the high protein expression levels of desmin, collagen Ⅰ and snail in podocytes, and inducing podocyte EMT. On the other hand, HG could cause the high protein expression levels of Wnt3α and β-catenin in podocytes, and activating Wnt3α/β-catenin signaling pathway. In addition, L-TP had no effect on the activation of podocyte proliferation, the co-treatment of L-TP and HG could significantly recover the protein expression levels of nephrin and podocin, inhibit the protein expression levels of desmin, collagen I and snail in podocytes, thus, further improving podocyte EMT. And that, the co-treatment of L-TP and HG could obviously decrease the high protein expression levels of Wnt3α and β-catenin induced by HG in podocytes, and inhibit Wnt3α/β-catenin signaling pathway activation. On the whole, HG can induce podocyte EMT by activating Wnt3α/β-catenin signaling pathway; L-TP can ameliorate podocyte EMT through inhibiting Wnt3α/β-catenin signaling pathway activation, which may be one of the effects and molecular mechanisms .

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20171027.013DOI Listing

Publication Analysis

Top Keywords

protein expression
32
expression levels
32
wnt3α/β-catenin signaling
20
signaling pathway
20
high dose
16
podocyte emt
16
nephrin podocin
12
desmin collagen
12
levels wnt3α
12
wnt3α β-catenin
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!