Lung cancer is the most common type of cancer with the highest cancer-associated mortality rates worldwide, as well as in Vietnam. Numerous studies have demonstrated that higher numbers and higher rate of activity of infiltrating natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) in the tumor are closely correlated with positive prognosis, tumor size decrease and longer survival of lung cancer patients. In the present study, the effectiveness of BINKIT kit in the expansion of NK cells and CTLs in the peripheral blood of 7 patients aged between 30 and 84 years with metastatic lung cancer was evaluated. After 21 days of culture, the average number of CTLs (CD3CD8) increased by 742.3-fold in the CTL culture, accounting for 72.2% of the cultured cell population, and the mean cell viability was 95.7%. In the NK cell culture, the average number of NK cells (CD3CD56) increased by 637.5-fold, accounting for 84.3% of the cultured cell population, with an average viability of 94.7%. The percentage of active NK cells (CD3CD56 bright) was 82.1%, which increased by 408.9-fold. Notably, a close correlation was identified between the numbers of cytokine-induced killer (CD3CD56) and NK (CD3CD56) cells in the NK cell culture (P<0.05). In the two culture conditions (namely NK cell and CTL cultures), no clear correlation was identified between the rate of initial immune cells in the peripheral blood and the corresponding number following expansion (P>0.05). These results revealed that the method of expansion and activation of NK cells and CTLs from peripheral blood was successfully applied using BINKIT, and reached the requirements for clinical applications in cancer treatment in Vietnam.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5840746PMC
http://dx.doi.org/10.3892/ol.2018.8029DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
peripheral blood
12
natural killer
8
killer cells
8
cells cytotoxic
8
cytotoxic lymphocytes
8
cancer patients
8
cells ctls
8
ctls peripheral
8
culture average
8

Similar Publications

Feasibility of detecting non-small cell lung cancer using exhaled breath condensate metabolomics.

J Breath Res

January 2025

School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Rd, Qingdao, Shandong, 266003, CHINA.

Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models.

View Article and Find Full Text PDF

Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM) and lung cancer. However, the mechanism underlying this association needs to be further elucidated.

View Article and Find Full Text PDF

A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!