Among the two types of bacterial L-asparaginases, only type II enzymes have been used in the treatment of acute lymphoblastic leukemia owing to their higher affinity for L-asparagine. However, current screening media used for the isolation of L-asparaginase-producing microorganisms do not discriminate between the two types of L-asparaginase. During an optimization study conducted to increase L-asparaginase production by environmental isolates, it was noticed that the pattern of L-asparaginase production in response to variations in glucose concentration varied between different isolates suggesting that they differ in their ability to produce type II L-asparaginases, an observation that was confirmed by further experiments. Bioinformatics analysis of available whole genome sequences revealed that indeed some species of this genus possess both L-asparaginase types while others possess only type I enzymes. By comparing the growth pattern of these isolates on different media, we propose that by omitting glucose, reducing the concentration of L-asparagine and providing an alternative nitrogen source in L-asparaginase screening media it may be possible to differentiate between type I and type II activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5843318 | PMC |
FEBS J
January 2025
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
Rhizobium etli is a nitrogen-fixing bacterium that encodes two l-asparaginases. The structure of the inducible R. etli asparaginase ReAV has been recently determined to reveal a protein with no similarity to known enzymes with l-asparaginase activity, but showing a curious resemblance to glutaminases and β-lactamases.
View Article and Find Full Text PDFBiotechnol J
November 2024
Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Türkiye.
Int J Biol Macromol
November 2024
School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan. Electronic address:
l-Asparaginases catalyze the hydrolysis of l-asparagine to l-aspartic acid and ammonia. These enzymes have potential applications in therapeutics and food industry. Tk1656, a highly active and thermostable l-asparaginase from Thermococcus kodakarensis, has been proved effective in selective killing of acute lymphocytic leukemia cells and in reducing acrylamide formation in baked and fried foods.
View Article and Find Full Text PDFInt J Biol Macromol
August 2024
Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil. Electronic address:
l-asparaginases play a crucial role in the treatment of acute lymphoblastic leukemia (ALL), a type of cancer that mostly affects children and teenagers. However, it is common for these molecules to cause adverse reactions during treatment. These downsides ignite the search for novel asparaginases to mitigate these problems.
View Article and Find Full Text PDFProtein Sci
April 2024
Center for Structural Biology, National Cancer Institute, Frederick, Maryland, USA.
L-Asparaginases (ASNases) catalyze the hydrolysis of L-Asn to L-Asp and ammonia. Members of the ASNase family are used as drugs in the treatment of leukemia, as well as in the food industry. The protomers of bacterial ASNases typically contain 300-400 amino acids (typical class 1 ASNases).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!