Mitochondrial dysfunction is a featured pathology underlying synaptic injury and neuronal stress in Alzheimer's disease (AD). In recent years, the vicious cycle between mitochondrial deficits and intra-neuronal Redox state imbalance has received considerable attention. In this regard, it is of great interest to determine whether antioxidants could alleviate mitochondrial dysfunction in AD-related conditions. Salvianolic acid B (SalB), a bioactive component of alvia miltiorrhiza Bge, is a potent antioxidant. Here we have determined the protective effect of SalB against Aβ-induced mitochondrial abnormalities. Our results showed that the application of SalB substantially alleviated intra-neuronal glutathione (GSH) and lipid oxidation and suppressed excess mitochondrial superoxide generation in Aβ-insulted neurons. Moreover, SalB has demonstrated strong protection on mitochondrial bioenergetics against Aβ toxicity evidenced by preserved mitochondrial membrane potential and ATP production, as well as rescued enzymatic activities of cytochrome C oxidase and F1Fo ATP synthase. In addition, Aβ-induced axonal mitochondrial fragmentation and increased dynamin-like protein 1 phosphorylation at Ser 616 were substantially mitigated by SalB. Lastly, the application of SalB restored synaptic density in Aβ-exposed neurons. The most parsimonious interpretation of the results is that intra-neuronal oxidative stress promotes mitochondrial dysfunction in AD-relevant pathological settings, and SalB has the potential to be a promising agent for AD therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.03.119DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
12
mitochondrial
10
salvianolic acid
8
aβ toxicity
8
application salb
8
salb
7
acid attenuates
4
attenuates mitochondrial
4
mitochondrial stress
4
stress aβ
4

Similar Publications

A high-calorie diet and lack of exercise are the most important risk factors contributing to metabolic dysfunction-associated steatotic liver disease (MASLD) initiation and progression. The precise molecular mechanisms of mitochondrial function alteration during MASLD development remain to be fully elucidated. In this study, a total of 60 male C57BL/6J mice were maintained on a normal or amylin liver NASH (AMLN) diet for 6 or 10 weeks.

View Article and Find Full Text PDF

Recent advancements in the understanding of the alterations in mitochondrial biogenesis in Alzheimer's disease.

Mol Biol Rep

January 2025

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.

View Article and Find Full Text PDF

Mitochondrial dysfunction-driven AMPK-p53 axis activation underpins the anti-hepatocellular carcinoma effects of sulfane sulfur.

Sci Rep

January 2025

Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.

View Article and Find Full Text PDF

FSH exacerbates bone loss by promoting osteoclast energy metabolism through the CREB-MDH2-NAD axis.

Metabolism

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China. Electronic address:

Aims: Osteoclast energy metabolism is a promising target for treating diseases characterized by high osteoclast activity, such as osteoporosis. However, the regulatory factors involved in osteoclast bioenergetic processes are still in the early stages of being fully understood. This study reveals the effects of follicle-stimulating hormone (FSH) on osteoclast energy metabolism.

View Article and Find Full Text PDF

The aim of the present study was to obtain new metal complexes of citrus pectin with cobalt ions based on potassium polygalacturonate and to prepare a new pharmacological composition (PC) PGKCo: PGNaCo (1:1) with antitumor activity based on potassium cobalt polygalacturonate (PGKCo) and sodium cobalt polygalacturonate (PGNaCo). The study of the effect of PGKCo, PGNaCo and PC on the cell viability of tumor cell lines of different genesis in vitro showed that the obtained compounds are soluble in water and exhibit selective cytotoxic activity against the tumor cell lines of human lung carcinoma A549, breast adenocarcinoma MCF-7 and cervical carcinoma M-HeLa, with no significant toxic effect on normal human cells. The possible mechanism of action of the investigated PC on M-HeLa cancer cells was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!