Secondary mechanical hyperalgesia to punctate mechanical stimuli and light touch (allodynia) are prominent symptoms in neuropathic pain states. In a combined microneurographic and psychophysical study, we investigated the role of mechano-insensitive (silent) nociceptors regarding induction. Electrical thresholds of mechano-sensitive and silent nociceptors were assessed by microneurography with two closely spaced intracutaneous electrodes (i.c.) and a transcutaneous configuration (t.c.) in the foot dorsum. For t.c. stimulation there was a marked difference between silent (median, quartiles; 60, 50-70 mA, n = 63) and mechano-sensitive fibers (3, 2-5 mA, n = 107). In silent fibers, thresholds were lower for i.c. stimulation (16, 14-19 mA, n = 8), but higher in mechano-sensitive units (6, 5-6 mA, n = 13). Corresponding psychophysical tests showed no difference between the stimulation configuration for pain thresholds, but lower thresholds for the i.c. stimulation in axon reflex erythema (12 vs. 21 mA), punctate hyperalgesia (9 vs. 15 mA) and allodynia (15 vs. 18 mA). Punctate hyperalgesia was evoked at very low stimulation frequencies of 1/20 Hz (7/7 subjects), whereas the induction of an axon reflex flare required stimulation at 1/5 Hz. Electrical stimulation which is sufficient to excite mechano-insensitive C nociceptors can induce secondary mechanical hyperalgesia even at low frequencies supporting a role of such low-level input to clinical pain states. Thus, differential nociceptor class-specific input to the spinal cord adds to the complexity of modulatory mechanisms that determine nociceptive processing in the spinal cord.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2018.03.006 | DOI Listing |
Neuroscientist
December 2024
Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK.
Swelling, stiffness, and pain in synovial joints are primary hallmarks of osteoarthritis and rheumatoid arthritis. Hyperactivity of nociceptors and excessive release of inflammatory factors and pain mediators play a crucial role, with emerging data suggesting extensive remodelling and plasticity of joint innervations. Herein, we review structural, functional, and molecular alterations in sensory and autonomic axons wiring arthritic joints and revisit mechanisms implicated in the sensitization of nociceptors, leading to chronic pain.
View Article and Find Full Text PDFPain
October 2024
Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
Nociceptors with somata in dorsal root ganglia (DRGs) readily switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Spontaneous activity (SA) during this state is present in vivo in rats months after spinal cord injury (SCI) and has been causally linked to SCI pain. Intrinsically generated SA and, more generally, ongoing activity (OA) are induced by various neuropathic conditions in rats, mice, and humans and are retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions.
View Article and Find Full Text PDFPain Rep
October 2024
Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
Eur J Pain
February 2025
Experimental Pain Research, MCTN, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
Background: We examined de-functionalization and temporal functional recovery of C-nociceptor evoked pain after topical 8% capsaicin applied for 4 consecutive days.
Methods: Capsaicin and placebo patches were applied to human forearm skin (n = 14). Cold, warmth and heat pain thresholds, pain NRS to electrical and thermal (48°C, 5 s) stimuli and axon reflex flare were recorded weekly for 49 days.
bioRxiv
January 2024
Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston.
Nociceptors with somata in dorsal root ganglia (DRGs) exhibit an unusual readiness to switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Ongoing activity (OA) during this state is present in vivo in rats months after spinal cord injury (SCI), and has been causally linked to SCI pain. OA induced by various neuropathic conditions in rats, mice, and humans is retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!