Animals rely on mechanosensory feedback from proprioceptors to control locomotory body movements. Unexpectedly, we found that this movement control requires visual opsins. Disrupting the Drosophila opsins NINAE or Rh6 impaired larval locomotion and body contractions, independently of light and vision. Opsins were detected in chordotonal proprioceptors along the larval body, localizing to their ciliated dendrites. Loss of opsins impaired mechanically evoked proprioceptor spiking and cilium ultrastructure. Without NINAE or Rh6, NOMPC mechanotransduction channels leaked from proprioceptor cilia and ciliary Inactive (Iav) channels partly disappeared. Locomotion is shown to require opsins in proprioceptors, and the receptors are found to express the opsin gene Rh7, in addition to ninaE and Rh6. Besides implicating opsins in movement control, this documents roles of non-ciliary, rhabdomeric opsins in cilium organization, providing a model for a key transition in opsin evolution and suggesting that structural roles of rhabdomeric opsins preceded their use for light detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2018.02.028 | DOI Listing |
Neuron
April 2018
Department of Cellular Neurobiology, University of Goettingen, Goettingen, Germany. Electronic address:
Animals rely on mechanosensory feedback from proprioceptors to control locomotory body movements. Unexpectedly, we found that this movement control requires visual opsins. Disrupting the Drosophila opsins NINAE or Rh6 impaired larval locomotion and body contractions, independently of light and vision.
View Article and Find Full Text PDFJ Exp Biol
October 2012
State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. So far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have been largely undemonstrated.
View Article and Find Full Text PDFJ Neurosci
December 1999
Institute of Biotechnology, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas 78245, USA.
Color discrimination requires the input of different photoreceptor cells that are sensitive to different wavelengths of light. The Drosophila visual system contains multiple classes of photoreceptor cells that differ in anatomical location, synaptic connections, and spectral sensitivity. The Rh5 and Rh6 opsins are expressed in nonoverlapping sets of R8 cells and are the only Drosophila visual pigments that remain uncharacterized.
View Article and Find Full Text PDFJ Comp Neurol
September 1999
Department of Biology, Kawasaki Medical School, Kurashiki City, Okayama 701-0192, Japan.
Many invertebrates have supplementary extraocular photoreceptors that often are implicated in circadian rhythms. An extraretinal group of candidate photoreceptors in the fruit fly, Drosophila melanogaster, has been revealed previously at the posterior margin of the compound eye by using a photoreceptor-specific monoclonal antibody (Hofbauer and Buchner [1989] Naturwissen 76:335-336), but it never has been characterized. Here, we report the fine structure of this cell cluster reported by Hofbauer and Buchner, which is called "eyelet," as well as the further candidacy of their visual pigment and neurotransmitter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!