Active Protection: Learning-Activated Raf/MAPK Activity Protects Labile Memory from Rac1-Independent Forgetting.

Neuron

Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. Electronic address:

Published: April 2018

Active forgetting explains the intrinsic instability of a labile memory lasting for hours. However, how such memory maintains stability against unwanted disruption is not completely understood. Here, we report a learning-activated active protection mechanism that enables labile memory to resist disruptive sensory experiences in Drosophila. Aversive olfactory conditioning activates mitogen-activated protein kinase (MAPK) transiently in the mushroom-body γ lobe, where labile-aversive memory is stored. This increased MAPK activity significantly prolongs labile memory retention and enhances its resistance to disruption induced by heat shock, electric shock, or odor reactivation. Such experience-induced forgetting cannot be prevented by inhibition of Rac1 activity. Instead, protection of Rac1-independent forgetting correlates with non-muscle myosin II activity and persistence of learning-induced presynaptic structural changes. Increased Raf/MAPK activity, together with suppressed Rac1 activity, completely blocks labile memory decay. Thus, learning not only leads to memory formation, but also activates active protection and active forgetting to regulate the formed memory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2018.02.025DOI Listing

Publication Analysis

Top Keywords

labile memory
20
memory
9
active protection
8
raf/mapk activity
8
rac1-independent forgetting
8
active forgetting
8
rac1 activity
8
activity
6
labile
5
forgetting
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!