Inflammation is a pathophysiological response of innate immunity to infection or tissue damage. This response is among others triggered by factors released by damaged or dying cells, termed damage-associated molecular pattern (DAMP) molecules that act as danger signals. DAMPs interact with pattern recognition receptors (PRRs) to contribute to the induction of inflammation. However, how released peroxiredoxins (PRDXs) are able to activate PRRs, such as Toll-like receptors (TLRs), remains elusive. Here, we used force-distance curve-based atomic force microscopy to investigate the molecular mechanisms by which extracellular human PRDX5 can activate a proinflammatory response. Single-molecule experiments demonstrated that PRDX5 binds to purified TLR4 receptors, on macrophage-differentiated THP-1 cells, and on human TLR4-transfected CHO cells. These findings suggest that extracellular PRDX5 can specifically trigger a proinflammatory response. Moreover, our work also revealed that PRDX5 binding induces a cellular mechanoresponse. Collectively, this study provides insights into the role of extracellular PRDX5 in innate immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2018.02.006DOI Listing

Publication Analysis

Top Keywords

innate immunity
12
proinflammatory response
8
extracellular prdx5
8
prdx5
5
specific interactions
4
interactions measured
4
measured afm
4
afm living
4
cells
4
living cells
4

Similar Publications

OsMYB1 antagonizes OsSPL14 to mediate rice resistance to brown planthopper and Xanthomonas oryzae pv. oryzae.

Plant Cell Rep

December 2024

CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.

OsMYB1 negatively mediates rice resistance to brown planthopper and rice blight. Additionally, OsMYB1 interacts with OsSPL14 and antagonizes its function by oppositely regulating downstream resistance-related genes. In their natural habitats, plants are concurrently attacked by different biotic factors.

View Article and Find Full Text PDF

Targeted Activation of Programmed Cell Death Pathways by Optogenetics.

Methods Mol Biol

December 2024

Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.

Regulated cell death is an important biological process by which an organism removes unwanted, malignant, or infected cells. Although it has become clear that different forms of regulated cell death exist, it remains difficult to compare their consequences at the cellular and tissue level as they are induced by different stimuli and proceed with different kinetics. Moreover, it was so far difficult to target and induce cell death in selected cells within cell populations or complex tissues without affecting its neighbors.

View Article and Find Full Text PDF

GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement.

View Article and Find Full Text PDF

Alternative splicing expands the antiviral IFITM repertoire in Chinese rufous horseshoe bats.

PLoS Pathog

December 2024

Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom.

Species-specific interferon responses are shaped by the virus-host arms race. The human interferon-induced transmembrane protein (IFITM) family consists of three antiviral IFITM genes that arose by gene duplication. These genes restrict virus entry and are key players in antiviral interferon responses.

View Article and Find Full Text PDF

Multi-Omics Study Reveals Nc886/vtRNA2-1 as a Positive Regulator of Prostate Cancer Cell Immunity.

J Proteome Res

December 2024

Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay.

Noncoding RNA 886 has emerged as a pivotal regulatory RNA with distinct functions across tissues, acting as a regulator of protein activity by directly binding to protein partners. While it is well recognized as a tumor suppressor in prostate cancer, the underlying molecular mechanisms remain elusive. To discover the principal pathways regulated by nc886 in prostate cancer, we used a transcriptomic and proteomic approach analyzing malignant DU145, LNCaP, PC3, and benign RWPE-1 prostate cell line models transiently transfected with in vitro transcribed nc886 or antisense oligonucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!