Development of a simultaneous LC-MS/MS method to predict in vivo drug-drug interaction in mice.

Arch Pharm Res

BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.

Published: April 2018

Cocktail substrates are useful in investigating drug-drug interactions (DDI) that can rapidly identify the cytochrome P450 (CYP) isoforms that interact with test drugs. In this study, we developed and validated five probe drugs for CYP1A, CYP2B, CYP2C, CYP2D, and CYP3A using LC-MS/MS to determine CYP activities in mice. The five probe substrates were caffeine (2 mg/kg), bupropion (30 mg/kg), omeprazole (4 mg/kg), dextromethorphan (40 mg/kg), and midazolam (2 mg/kg) for CYP1A, CYP2B, CYP2C, CYP2D, and CYP3A, respectively. The cocktail substrates were orally administered to male 5-week-old ICR mice over 0-240 min. The analytical method was validated; it showed high selectivity, linearity, and acceptable accuracy. We confirmed the lack of interaction of this cocktail in the control state (no effect of CYP inducer or inhibitor) and suggested AUC (metabolite/substrate) as a unit to evaluate DDI in vivo. In addition, the cocktail assay was applied for the determination of pharmacokinetic parameters against phenobarbital as a selective CYP2B inducer and ketoconazole as a strong CYP3A inhibitor. The concentration of cocktail substrates and the LC-MS/MS method were optimized. In conclusion, we developed a simultaneous and comprehensive analysis system for predicting potential DDI in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-018-1012-8DOI Listing

Publication Analysis

Top Keywords

cocktail substrates
12
lc-ms/ms method
8
cyp1a cyp2b
8
cyp2b cyp2c
8
cyp2c cyp2d
8
cyp2d cyp3a
8
cocktail
5
development simultaneous
4
simultaneous lc-ms/ms
4
method predict
4

Similar Publications

Seralutinib, an inhaled, small-molecule tyrosine kinase inhibitor in clinical development for the treatment of pulmonary arterial hypertension (PAH), was evaluated for its potential as a perpetrator or victim of a metabolic and transporter-based drug-drug interactions in 2 phase 1 studies. In study 1, 24 participants received a cocktail of probe substrates: caffeine (CYP1A2), montelukast (CYP2C8), flurbiprofen (CYP2C9), midazolam (CYP3A), and pravastatin (OATP1B1/1B3), plus digoxin (P-gp) with or without seralutinib. In study 2, 19 participants received seralutinib with/without itraconazole, a strong CYP3A inhibitor, or fosaprepitant, a weak CYP3A inhibitor.

View Article and Find Full Text PDF

Background And Objective: The objective of this study was to characterize the effects of risankizumab on the pharmacokinetics of cytochrome P450 (CYP) 1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A substrates in patients with moderately to severely active Crohn's disease (CD) or ulcerative colitis (UC) using a cocktail approach.

Methods: Patients with CD or UC (n = 20) received single doses of probe substrates for CYP1A2 (caffeine 100 mg), CYP2C9 (warfarin 10 mg), CYP2C19 (omeprazole 20 mg), CYP2D6 (metoprolol 50 mg), and CYP3A (midazolam 2 mg) before and after intravenous infusions of risankizumab 1800 mg once every 4 weeks for four doses. Serial blood samples were collected for determination of concentrations of the CYP probe drugs and metabolites with and without risankizumab.

View Article and Find Full Text PDF

Saccharification and co-fermentation of lignocellulosic biomass by a cockroach-gut bacterial symbiont and yeast cocktail for bioethanol production.

BMC Biotechnol

December 2024

Environmental Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria.

Background: The eco-friendly transformation of agro-industrial wastes through microbial bioconversion could address sustainability challenges in line with the United Nations' Sustainable Development Goals. The bulk of agro-industrial waste consists of lignocellulosic materials with fermentable sugars, predominantly cellulose and hemicellulose. A number of pretreatment options have been employed for material saccharification toward successful fermentation into second-generation bioethanol.

View Article and Find Full Text PDF

Investigating enhancement of protease and lysozyme combination pretreatment on hydrolysis of sludge organics under humic acid inhibition.

Bioresour Technol

December 2024

State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China.

This study investigated the impact of humic acid (HA) on enzymatic pretreatment efficiency, focusing on sludge properties and HA molecular structure. The results showed that enzymatic pretreatment alleviates HA inhibition, improving hydrolysis efficiency. In the presence of HA, soluble proteins and polysaccharides in the enzyme-cocktail group reached 27.

View Article and Find Full Text PDF

The proline catabolic pathway consisting of proline dehydrogenase (PRODH) and L-glutamate-γ-semialdehyde (GSAL) dehydrogenase (GSALDH) catalyzes the four-electron oxidation of L-proline to L-glutamate. Chemical probes to these enzymes are of interest for their role in cancer and inherited metabolic disease. Here, we report the results of a crystallographic fragment-screening campaign targeting both enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!