AI Article Synopsis

  • The petroleum industry produces various wastes that are often disposed of near well locations, leading to soil and water contamination.
  • This study aimed to assess barium's solubility and its distribution in a contaminated site in Mato Rico, PR, by collecting soil samples at various depths.
  • Findings revealed that while the top 0-30 cm had the largest contaminated area, the highest barium concentrations were actually found between 60-90 cm, with most barium being in a non-labile, low solubility form, indicating a low environmental risk.

Article Abstract

The petroleum industry generates a range of wastes which is often are disposed in soil close to the well location, negatively affecting soil and water quality. The objective of this study was to evaluate the solubility and map the spatial variability of barium in a potentially contaminated area. The study area consisted of a petroleum well-drilling waste disposal site located in the municipality of Mato Rico-PR. A large georeferenced sampling grid was organized. Soil samples were collected at depths of 30, 60, 90, and 120 cm for determination of the "pseudo-total" concentrations and geochemical fractionation of barium. The barium concentrations showed spatial dependence, which permitted the use of geostatistical interpolators. Regarding depth, the depth of 0-30 cm showed the largest contaminated area; however, higher concentrations of barium were found at the depth of 60-90 cm. The results of geochemical fractionation showed that the analyzed samples contained percentages higher than 99% in the non-labile fraction (residual). These results indicate clearly that the barium was in a condition of low solubility, even for samples that had the highest concentrations, presenting low-environmental risk.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-018-6566-xDOI Listing

Publication Analysis

Top Keywords

spatial variability
8
petroleum well-drilling
8
well-drilling waste
8
waste disposal
8
contaminated area
8
geochemical fractionation
8
barium
6
variability solubility
4
solubility barium
4
barium petroleum
4

Similar Publications

Opportunistic screening is essential to improve the identification of individuals with osteoporosis. Our group has utilized image texture features to assess bone quality using clinical MRIs. We have previously demonstrated that greater heterogeneity of MRI texture related to history of fragility fractures, lower bone density, and worse microarchitecture.

View Article and Find Full Text PDF

Integrating Ecological Suitability and Socioeconomic Feasibility at Landscape Scale to Restore Biodiversity and Ecosystem Services in Southern Chile.

Environ Manage

December 2024

Departamento de Ciencias de la Vida - UD Ecología, Edificio de Ciencias, Universidad de Alcalá, E-28805, Alcalá de Henares, Spain.

Deforestation and forest degradation are key drivers of biodiversity loss and global environmental change. Ecosystem restoration is recognized as a global priority to counter these processes. Forest restoration efforts have commonly adopted a predominantly ecological approach, without including broader socioeconomic variables and the characteristics of the rural context.

View Article and Find Full Text PDF

Stable isotopes of carbon (δC) and nitrogen (δN) are commonly employed to reconstruct past change in marine ecosystems and nutrient cycling. However, multiple biogeochemical and physical drivers govern spatiotemporal variability of these isotopic signals, particularly in dynamic coastal systems, complicating interpretation. Here, we coupled a modern multi-year (2010-2019) δC and δN isoscape record from intertidal mussels (Mytilus californianus) with high-resolution ocean model output and satellite chlorophyll-a observations in the California Current System (32°-43° N) to identify major drivers of isotopic variability.

View Article and Find Full Text PDF

The Atlantic salmon (Salmo salar) is an iconic species of significant ecological and economic importance. Their downstream migration as smolts represents a critical life-history stage that exposes them to numerous challenges, including passage through hydropower plants. Understanding and predicting fine-scale movement patterns of smolts near hydropower plants is therefore essential for adaptive and effective management and conservation of this species.

View Article and Find Full Text PDF

Integrating spatial and temporal information is essential for our sensory experience. While psychophysical evidence suggests spatial dependencies in duration perception, few studies have directly tested the neural link between temporal and spatial processing. Using ultra-high-field functional MRI and neuronal-based modeling, we investigated how and where the processing and the representation of a visual stimulus duration is linked to that of its spatial location.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!