Background/aims: The role of Rictor in hepatic ischemia/reperfusion (I/R) injury remains unknown. Here, we comprehensively examined the role of Rictor in hepatic I/R injury.

Methods: We studied the expression of Rictor during hepatic I/R injury. The regulatory effects of Rictor on inflammatory responses, cytokine and chemokine release, apoptotic and anti-apoptotic responses, and autophagy induction during hepatic I/R injury were identified via the shRNA-mediated knockdown of Rictor. Subsequently, we collected the liver and blood samples of these mice to evaluate liver injury, mRNA and protein levels. Additionally, the signaling pathways induced by Rictor were investigated. Furthermore, the extent of activation of MAPKs in response to Rictor deficiency was investigated in lipopolysaccharide (LPS)-treated RAW264.7 cells. The mRNA expression levels were analyzed by real-time PCR, and the protein expression levels were analyzed using Western blot, immunofluorescence staining and enzyme-linked immunosorbent assay (ELISA).

Results: The expression of Rictor was increased during hepatic I/R injury in vivo and hypoxia/reoxygenation (H/R) injury in vitro. Rictor deficiency enhanced the extent of liver injury by increasing macrophage and neutrophil infiltration, promoting cytokine and chemokine release, aggravating hepatocyte apoptosis, suppressing anti-apoptotic responses, and inhibiting autophagy induction during both hepatic I/R and H/R injury. Rictor was associated with the activation of hepatic I/R injury-induced MAPK signaling. In addition, Rictor deficiency affected MAPK activation in LPS-treated RAW264.7 cells.

Conclusion: Rictor can substantially ameliorate I/R-induced liver injury. Therefore, our findings strongly suggest a therapeutic value of the Rictor/mTORC2 axis in hepatic I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000488165DOI Listing

Publication Analysis

Top Keywords

hepatic i/r
28
i/r injury
20
rictor deficiency
16
rictor
13
rictor hepatic
12
liver injury
12
injury
11
hepatic
9
hepatic ischemia/reperfusion
8
mapk signaling
8

Similar Publications

Background: We sought to define whether and how hepatic ischemia/reperfusion (I/R) as manifested by perioperative aspartate aminotransferase (AST) and alanine aminotransaminase (ALT) levels impact long-term outcomes after curative-intent resection of hepatocellular carcinoma (HCC).

Patients And Methods: Intrasplenic injection of HCC cells was used to establish a murine model of HCC recurrence with versus without I/R injury. Patients who underwent curative resection for HCC were identified from a multi-institutional derivative cohort (DC) and separate external validation (VC) cohort.

View Article and Find Full Text PDF

Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway.

Redox Biol

December 2024

Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China. Electronic address:

Ferroptosis plays a pivotal role in the pathogenesis of ischemia-reperfusion injury (IRI). Liraglutide, as a GLP-1 receptor (GLP-1R) agonist, has exhibited extensive biological effects beyond its hypoglycemic action. Recent studies have shed light on the regulatory influence of Liraglutide on ferroptosis, yet the precise underlying mechanism remains elusive.

View Article and Find Full Text PDF

The Role of Fibrinogen and Platelets in Mouse Liver Ischemia-Reperfusion Injury: Distribution and Pathophysiological Insights.

Transplant Proc

December 2024

State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Liver ischemia-reperfusion (I/R) injury is a critical issue in clinical settings, particularly in liver transplantation and resection, leading to severe hepatocellular dysfunction and organ failure. This study investigates the role of fibrinogen and platelets in liver I/R injury, focusing on their distribution and pathophysiological impact within liver lobules. Using a mouse model, we examined the expression and localization of fibrinogen and platelets at various time points postreperfusion.

View Article and Find Full Text PDF
Article Synopsis
  • OGG1 (8-oxoguanine DNA glycosylase-1) is essential for DNA repair, particularly in removing damaged DNA caused by oxidation, and its deficiency in mice leads to increased obesity and metabolic issues from a high-fat diet (HFD).
  • The study found that OGG1-deficient mice had greater obesity and impaired insulin action compared to wild-type mice, underscoring OGG1's significant role in metabolism and insulin sensitivity.
  • Targeting OGG1 to mitochondria showed protective effects against HFD-induced obesity and insulin resistance, highlighting potential mechanisms that could inform future therapeutic strategies.
View Article and Find Full Text PDF

Background: Ischemia and reperfusion (I/R)-induced liver injury contributes to morbidity and mortality during hepatic surgery or liver transplantation. As a pivotal regulator of cancer and inflammation, the role of Von Hippel-Lindau (VHL) in hepatic I/R injury remains undetermined.

Methods: We investigated the role of VHL in hepatic I/R injury by generating VHL conditional knockout (VHL-KO) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!