Penetration in 3D tumor spheroids and explants: Adding a further dimension to the structure-activity relationship of cell-penetrating peptides.

Biochim Biophys Acta Biomembr

Dept. of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA, Nijmegen, The Netherlands. Electronic address:

Published: June 2018

Drug delivery into tumors and metastases is a major challenge in the eradication of cancers such as epithelial ovarian carcinoma. Cationic cell-penetrating peptides (CPPs) are a promising group of delivery vehicles to mediate cellular entry of molecules that otherwise poorly enter cells. However, little is known about their penetration behavior in tissues. Here, we investigated penetration of cationic CPPs in 3D ovarian cancer spheroids and patient-derived 3D tumor explants. Penetration kinetics and distribution after long-term incubation were imaged by confocal microscopy. In addition, spheroids and tumor explants were dissociated and cell-associated fluorescence determined by flow cytometry. CPPs with high uptake activity showed enhanced sequestration in the periphery of the spheroid, whereas less active CPPs were able to penetrate deeper into the tissue. CPPs consisting of d-amino acids were advantageous over l-amino acid CPPs as they showed less but long lasting cellular uptake activity, which benefitted penetration and retention over time. In primary tumor cultures, in contrast to nonaarginine, the amphipathic CPP penetratin was strongly sequestered by cell debris and matrix components pointing towards arginine-rich CPPs as a preferred choice. Overall, the data show that testing in 3D models leads to a different choice of the preferred peptide in comparison to a standard 2D cell culture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2018.03.007DOI Listing

Publication Analysis

Top Keywords

cell-penetrating peptides
8
tumor explants
8
uptake activity
8
cpps
7
penetration
5
penetration tumor
4
tumor spheroids
4
spheroids explants
4
explants adding
4
adding dimension
4

Similar Publications

Cell-penetrating peptides (CPPs) are a diverse group of peptides, typically composed of 4 to 40 amino acids, known for their unique ability to transport a wide range of substances-such as small molecules, plasmid DNA, small interfering RNA, proteins, viruses, and nanoparticles-across cellular membranes while preserving the integrity of the cargo. CPPs exhibit passive and non-selective behavior, often requiring functionalization or chemical modification to enhance their specificity and efficacy. The precise mechanisms governing the cellular uptake of CPPs remain ambiguous; however, electrostatic interactions between positively charged amino acids and negatively charged glycosaminoglycans on the membrane, particularly heparan sulfate proteoglycans, are considered the initial crucial step for CPP uptake.

View Article and Find Full Text PDF

Cancer-Targeting Applications of Cell-Penetrating Peptides.

Int J Mol Sci

December 2024

Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico.

Cell-penetrating peptides (CPPs) offer a unique and efficient mechanism for delivering therapeutic agents directly into cancer cells. These peptides can traverse cellular membranes, overcoming one of the critical barriers in drug delivery systems. In this review, we explore recent advancements in the application of CPPs for cancer treatment, focusing on mechanisms, delivery strategies, and clinical potential.

View Article and Find Full Text PDF

To conjugate or not to conjugate? evaluating the potential use of cell-penetrating peptides for conjugation or complexation with oligonucleotides by surface plasmon resonance.

Int J Pharm

January 2025

Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address:

Oligonucleotides represent a class of molecules that exhibit remarkable therapeutic potential due to their unparalleled target specificity, yet they suffer from limited cellular uptake and lack of tissue selectivity. Extensive research is conducted with cell-penetrating peptides (CPPs) as delivery excipients due to their ability to translocate across cellular membranes and deliver cargo into cells. This study aims to investigate an innovative approach to rapidly, and with small amounts of compound, analyze and compare complexation of CPPs to oligonucleotides.

View Article and Find Full Text PDF

Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity.

View Article and Find Full Text PDF

Although peptide vaccines offer a novel venue for cancer immunotherapy, clinical success has been rather limited. Cell-penetrating peptides, due to their ability to translocate through the cell membrane, could be conjugated to the peptide vaccine to2 enhance therapeutic efficiency. The S4 transduction domain of the shaker-potassium channel was conjugated to mammaglobin-A (MamA) immunodominant epitope (MamA2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!