Morphological characterization of a plant-made virus-like particle vaccine bearing influenza virus hemagglutinins by electron microscopy.

Vaccine

Department of Anatomy & Cell Biology, Faculty of Medicine, McGill University, Groupe de Recherche Axe sur la Structure des Proteines (GRASP), Groupe d'Etude de Proteines Membranaires (GEPROM), 3640 University Street, Montréal, QC H3A 2B2, Canada; Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia. Electronic address:

Published: April 2018

Plant-made virus-like particle (VLP) vaccines that display wild-type influenza hemagglutinin (HA) are rapidly advancing through clinical trials. Produced by transient transfection of Nicotiana benthamiana, these novel vaccines are unusually immunogenic, eliciting both humoral and cellular responses. Here, we directly visualized VLPs bearing either HA trimers derived from strains A/California/7/2009 or A/Indonesia/5/05 using cryo-electron microscopy and determined the 3D organization of the VLPs using cryo-electron tomography. More than 99.9% of the HA trimers in the vaccine preparations were found on discoid and ovoid-shaped particles. The discoid-shaped VLPs presented HA trimers on their outer diameter. The ovoid-shaped VLPs contained HA trimers evenly distributed at their surface. The VLPs were stable for 12 months at 4 °C. Early interactions of the VLPs with mouse dendritic and human monocytoid (U-937) cells were visualized by electron microscopy after resin-embedding and sectioning. The VLP particles were observed bound to plasma membranes as well as inside vesicles. Mouse dendritic cells exposed to VLPs displayed classic morphological changes associated with activation including the extensive formation of dendrites. Our findings demonstrate that plant-made VLPs bearing influenza HA trimers are morphologically stable over time and raise the possibility that these VLPs may interact with and activate antigen-presenting cells in a manner similar to the intact virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2018.02.106DOI Listing

Publication Analysis

Top Keywords

vlps
9
plant-made virus-like
8
virus-like particle
8
bearing influenza
8
electron microscopy
8
vlps bearing
8
mouse dendritic
8
trimers
5
morphological characterization
4
characterization plant-made
4

Similar Publications

Continuous Production of Influenza VLPs Using IC-BEVS and Multi-Stage Bioreactors.

Biotechnol Bioeng

January 2025

Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.

The insect cell-baculovirus expression vector system (IC-BEVS) has been an asset to produce biologics for over 30 years. With the current trend in biotechnology shifting toward process intensification and integration, developing intensified processes such as continuous production is crucial to hold this platform as a suitable alternative to others. However, the implementation of continuous production has been hindered by the lytic nature of this expression system and the process-detrimental virus passage effect.

View Article and Find Full Text PDF

As infants suffer significant morbidity and mortality due to norovirus-related acute gastroenteritis (AGE), we assessed four formulations of the bivalent virus-like particle (VLP) vaccine candidate (HIL-214) in Panamanian and Colombian infants. 360 infants aged 6 weeks to 5 months were randomly allocated to 8 groups to receive three doses of HIL-214 or two doses of HIL-214 and one dose of placebo (Days 1, 56 and 112), where HIL-214 doses contained 15/15, 15/50, 50/50 or 50/150 μg of GI.1/GII.

View Article and Find Full Text PDF

PEG10 is a retroelement-derived Mart-family gene that is necessary for placentation and has been implicated in neurological disease. PEG10 resembles both retrotransposon and retroviral proteins and forms virus-like particles (VLPs) that can be purified using iodixanol ultracentrifugation. It is hypothesized that formation of VLPs is crucial to the biological roles of PEG10 in reproduction and neurological health.

View Article and Find Full Text PDF

Dissociation of Macromolecules in Laser-Heated Droplets Monitored by CD-MS.

Anal Chem

January 2025

Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States.

Charge detection mass spectrometry (CD-MS) is used to monitor the dissociation of large (300 kDa to 20 MDa) protein complexes in droplets heated with a 10.6 μm CO laser. In this approach, electrospray ionization (ESI) is used to produce charged droplets containing macromolecular complexes.

View Article and Find Full Text PDF

Development and Application of a Fully Automated Chemiluminescence Enzyme Immunoassay for the Detection of Antibodies Against Porcine Circovirus 3 Cap.

Viruses

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Center for Swine Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.

Porcine circovirus 3 (PCV3) is a small non-enveloped circovirus associated with porcine dermatitis and nephropathy syndrome (PDNS). It has occurred worldwide and poses a serious threat to the pig industry. However, there is no commercially available vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!