Targeted Acid-Sensing Ion Channel Therapies for Migraine.

Neurotherapeutics

School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, BSB-14, Richardson, TX, 75080, USA.

Published: April 2018

Acid-sensing ion channels (ASICs) are a family of ion channels, consisting of four members; ASIC1 to 4. These channels are sensitive to changes in pH and are expressed throughout the central and peripheral nervous systems-including brain, spinal cord, and sensory ganglia. They have been implicated in a number of neurological conditions such as stroke and cerebral ischemia, traumatic brain injury, and epilepsy, and more recently in migraine. Their expression within areas of interest in the brain in migraine, such as the hypothalamus and PAG, their demonstrated involvement in preclinical models of meningeal afferent signaling, and their role in cortical spreading depression (the electrophysiological correlate of migraine aura), has enhanced research interest into these channels as potential therapeutic targets in migraine. Migraine is a disorder with a paucity of both acute and preventive therapies available, in which at best 50% of patients respond to available medications, and these medications often have intolerable side effects. There is therefore a great need for therapeutic development for this disabling condition. This review will summarize the understanding of the structure and CNS expression of ASICs, the mechanisms for their potential role in nociception, recent work in migraine, and areas for future research and drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935648PMC
http://dx.doi.org/10.1007/s13311-018-0619-2DOI Listing

Publication Analysis

Top Keywords

acid-sensing ion
8
ion channels
8
migraine
7
targeted acid-sensing
4
ion channel
4
channel therapies
4
therapies migraine
4
migraine acid-sensing
4
channels
4
channels asics
4

Similar Publications

Lactate: Beyond a mere fuel in the epileptic brain.

Neuropharmacology

December 2024

Department of Pharmacology, Medical School of Southeast University, Nanjing, China. Electronic address:

Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are typically activated by acidic environments and contribute to nociception and synaptic plasticity. ASIC1a is the most abundant subunit in the central nervous system and forms homomeric channels permeable to Na and Ca , making it a compelling therapeutic target for acidotic pathologies including stroke and traumatic brain injury. However, a complete conformational library of human ASIC1a in its various functional states has yet to be described.

View Article and Find Full Text PDF

Background: Acid-sensing ion channels are activated during myocardial ischemia and are implicated in the mechanism of myocardial ischemia-reperfusion injury (MIRI). Acid-sensing ion channel 3 (ASIC3), the most pH-sensitive member of the ASIC family, is highly expressed in myocardial tissues. However, the role of ASIC3 in MIRI and its precise effects on the myocardial metabolome remain unclear.

View Article and Find Full Text PDF

Sensitization of primary afferents is essential for the development of pain, but the molecular events involved in this process and its reversal are poorly defined. Recent studies revealed that acid-sensing ion channels (ASICs) control the excitability of nociceptors in the urinary bladder. Using genetic and pharmacological tools we show that ASICs are functionally coupled with voltage-gated Ca channels to mediate Ca transients evoked by acidification in sensory neurons.

View Article and Find Full Text PDF

Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3.

J Phys Chem B

December 2024

Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States.

Article Synopsis
  • * Research utilizing electrophysiology and molecular dynamics simulations indicates that PUFAs like docosahexaenoic acid (DHA) prevent a membrane phospholipid, POPC, from blocking the ion channel's pore, which enhances current flow.
  • * Single-channel recording confirms that DHA increases the current amplitude in ASIC3, supporting the idea that PUFAs relieve pore blockages and highlighting a new way these fatty acids influence ion channel function.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!