In this paper, we develop a phenologically explicit reaction-diffusion model to analyze the spatial spread of a univoltine insect species. Our model assumes four explicit life stages: adult, two larval, and pupa, with a fourth, implicit, egg stage modeled as a time delay between oviposition and emergence as a larva. As such, our model is broadly applicable to holometabolous insects. To account for phenology (seasonal biological timing), we introduce four time-dependent phenological functions describing adult emergence, oviposition and larval conversion, respectively. Emergence is defined as the per-capita probability of an adult emerging from the pupal stage at a particular time. Oviposition is defined as the per-capita rate of adult egg deposition at a particular time. Two functions deal with the larva stage 1 to larva stage 2, and larva stage 2 to pupa conversion as per-capita rate of conversion at a particular time. This very general formulation allows us to accommodate a wide variety of alternative insect phenologies and lifestyles. We provide the moment-generating function for the general linearized system in terms of phenological functions and model parameters. We prove that the spreading speed of the linearized system is the same as that for nonlinear system. We then find explicit solutions for the spreading speed of the insect population for the limiting cases where (1) emergence and oviposition are impulsive (i.e., take place over an extremely narrow time window), larval conversion occurs at a constant rate, and larvae are immobile, (2) emergence and oviposition are impulsive (i.e., take place over an extremely narrow time window), larval conversion occurs at a constant rate starting at a delayed time from egg hatch, and larvae are immobile, and (3) emergence, oviposition, and larval conversion are impulsive. To consider other biological scenarios, including cases with emergence and oviposition windows of finite width as well as mobile larvae, we use numerical simulations. Our results provide a framework for understanding how phenology can interact with spatial spread to facilitate (or hinder) species expansion. This is an important area of research within the context of global change, which brings both new invasive species and range shifts for native species, all the while causing perturbations to species phenology that may impact the abilities of native and invasive populations to spread.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-018-0409-3 | DOI Listing |
Glob Chang Biol
January 2025
Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.
Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA.
Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv.
View Article and Find Full Text PDFInsects
December 2024
Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
is a commonly used biological agent, but its existing host eggs have shown some problems in the breeding of , and the search for more suitable host eggs is imminent. Here, we focused on , an intermediate host that was used in the past for spp. but has since received less attention.
View Article and Find Full Text PDFBiology (Basel)
December 2024
College of Plant Protection, Yangzhou University, Yangzhou 225091, China.
(Walker), a significant migratory pest in many Asian countries, can cause severe damage to wheat crops. Understanding whether wild oat can serve as an alternate host is important for informing predictive models of infestation levels in wheat fields and can improve pest and weed management strategies. We first conducted both choice and no-choice experiments and found that readily laid eggs on both wheat and wild oat, with no significant oviposition preference.
View Article and Find Full Text PDFExp Appl Acarol
December 2024
Faculty of Agriculture and Marine Science, Kochi University, 200 Monobeotsu, Nankoku, Kochi, 783-8502, Japan.
Spider mites (Acari: Tetranychidae) overwinter as eggs or adult females, but some do so as multiple life stages on evergreen hosts. However, proximate factors influencing such overwintering stages remain poorly understood. This study investigated photoperiodic responses and life-stage compositions during winter in a population of Schizotetranychus shii, a specialist of Japanese chinquapin (Fagaceae).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!