AI Article Synopsis

  • The study investigates the RNA viromes of wild Aedes aegypti mosquitoes from Bangkok, Thailand, and Cairns, Australia, which are key vectors for dengue, Zika, and chikungunya viruses.* -
  • A comparison of the two mosquito populations revealed high virome similarity and identified up to 27 insect-specific viruses, including three dominant characterized viruses: Phasi Charoen-like virus, Humaita-Tubiacanga virus, and Cell fusing agent virus.* -
  • Findings indicate that the diversity of viromes, including potential viral infections and genetic alleles, may influence mosquito vector competence, suggesting the need for further research on the role of viromes in arbovirus transmission.*

Article Abstract

Medically important arboviruses such as dengue, Zika, and chikungunya viruses are primarily transmitted by the globally distributed mosquito Aedes aegypti. Increasing evidence suggests that transmission can be influenced by mosquito viromes. Herein RNA-Seq was used to characterize RNA metaviromes of wild-caught Ae. aegypti from Bangkok (Thailand) and from Cairns (Australia). The two mosquito populations showed a high degree of similarity in their viromes. BLAST searches of assembled contigs suggest up to 27 insect-specific viruses may infect Ae. aegypti, with up to 23 of these currently uncharacterized and up to 16 infecting mosquitoes from both Cairns and Bangkok. Three characterized viruses dominated, Phasi Charoen-like virus, Humaita-Tubiacanga virus and Cell fusing agent virus, and comparisons with other available RNA-Seq datasets suggested infection levels with these viruses may vary in laboratory-reared mosquitoes. As expected, mosquitoes from Bangkok showed higher mitochondrial diversity and carried alleles associated with knock-down resistance to pyrethroids. Blood meal reads primarily mapped to human genes, with a small number also showing homology with rat/mouse and dog genes. These results highlight the wide spectrum of data that can be obtained from such RNA-Seq analyses, and suggests differing viromes may need to be considered in arbovirus vector competence studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856816PMC
http://dx.doi.org/10.1038/s41598-018-22945-yDOI Listing

Publication Analysis

Top Keywords

aedes aegypti
8
cairns bangkok
8
mapping virome
4
virome wild-caught
4
wild-caught aedes
4
aegypti
4
aegypti cairns
4
bangkok
4
bangkok medically
4
medically arboviruses
4

Similar Publications

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Background And Objectives: Salivary glands proteins but not glycoconjugates have been previously studied in mosquito vectors of human diseases. Glycoconjugates from salivary gland-derived proteins from human-feeding tick vectors can elicit hypersensitivity reactions which may also occur with mosquito bites. Protein glycoconjugate in salivary glands of the principal arboviral vector Aedes aegypti and the rapidly spreading malaria vector Anopheles stephensi were therefore investigated.

View Article and Find Full Text PDF

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

The microbiome influences critical aspects of mosquito biology and variations in microbial composition can impact the outcomes of laboratory studies. To investigate how biotic and abiotic conditions in an insectary affect the composition of the mosquito microbiome, a single cohort of Aedes aegypti eggs was divided into three batches and transferred to three different climate-controlled insectaries within the Liverpool School of Tropical Medicine. The bacterial microbiome composition was compared as mosquitoes developed, the microbiome of the mosquitoes' food sources was characterised, environmental conditions over time in each insectary were measured, and mosquito development and survival were recorded.

View Article and Find Full Text PDF

With their diverse species, mosquitoes are known to transmit the causal agents of diseases such as malaria, dengue, and yellow fever. Their high adaptability, attraction to humans, and variable adult behaviors make them a significant health concern. The focus on Aedes aegypti is significant for reducing vector-human contacts, monitoring insecticide resistance, and developing innovative vector management strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!