WASH, a Wiskott-Aldrich syndrome (WAS) family protein, has many cell and developmental roles related to its function as a branched actin nucleation factor. Similar to mammalian WASHC1, which is embryonic lethal, Wash was found to be essential for oogenesis and larval development. Recently, however, was reported to be homozygous viable. Here, we verify that the original null allele harbors an unrelated lethal background mutation; however, this unrelated lethal mutation does not contribute to any Wash oogenesis phenotypes. Significantly, we find that: (1) the homozygous null allele retains partial lethality, leading to non-Mendelian inheritance; (2) the allele's functions are subject to its specific genetic background; and (3) the homozygous stock rapidly accumulates modifications that allow it to become robust. Together, these results suggest that Wash plays an important role in oogenesis via the WASH regulatory complex. Finally, we show that another WAS family protein, SCAR/WAVE, plays a similar role in oogenesis and that it is upregulated as one of the modifications that allows the allele to survive in the homozygous state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963843PMC
http://dx.doi.org/10.1242/jcs.211573DOI Listing

Publication Analysis

Top Keywords

wash regulatory
8
regulatory complex
8
oogenesis wash
8
family protein
8
null allele
8
unrelated lethal
8
plays role
8
role oogenesis
8
wash
7
oogenesis
5

Similar Publications

Integrated SegFlow, µSIA, and UPLC for Online Sialic Acid Quantitation of Glycoproteins Directly from Bioreactors.

Eng Life Sci

January 2025

Analytical Development & Analytical Attribute Science in Biologics Bristol Myers Squibb Devens Massachusetts USA.

This study emphasizes the critical importance of closely monitoring and controlling the sialic acid content in therapeutic glycoproteins, including EPO, interferon-γ, Orencia, Enbrel, and others, as the level of sialylation directly impacts their pharmacokinetics (PK), immunogenicity, potency, and overall clinical performance due to its influence on protein clearance via hepatic asialoglycoprotein receptors (ASGPR). The ASGPR recognizes and binds to glycoproteins exposed to terminal galactose or N-acetylgalactosamine residues, leading to receptor-mediated endocytosis. Recent studies have demonstrated that sialylation of O-linked glycan plays a role in protecting against macrophage galactose lectin (MGL)-mediated clearance.

View Article and Find Full Text PDF

Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics.

J Hazard Mater

January 2025

School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China. Electronic address:

Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) release from textiles is a source of human exposure, but the mechanisms behind this release remain insufficiently studied. This research investigates the release and transport mechanisms of PFAS in outdoor jacket fabrics treated with a short side-chain fluorinated polymers (CF-SFPs) for durable water repellency (DWR). PA-based and PET-based fabrics were exposed to outdoor conditions and subjected to accelerated aging, followed by abrasion, washing, and drying experiments to simulate wear and degradation.

View Article and Find Full Text PDF

Intratonsillar Immunotherapy: A Convenient and Effective Alternative to Subcutaneous Immunotherapy for Allergic Rhinitis.

Research (Wash D C)

January 2025

Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.

Allergen-specific immunotherapy (AIT) is the only treatment that addresses the root cause of immunoglobulin E (IgE)-mediated allergies, but conventional methods face challenges with treatment duration, patient compliance, and adverse effects. In this study, we propose intratonsillar immunotherapy (ITIT) as a new effective and safer route for AIT. Prior to clinical trials, we analyzed tonsil samples from human subjects to assess immune responses, measuring interleukin-4 (IL-4), IL-21, total IgE (tIgE), and allergen-specific IgE concentrations using ELISA and BioIC.

View Article and Find Full Text PDF

Identifying sex similarities and differences in structure and function of the sinoatrial node in the mouse heart.

Front Med (Lausanne)

December 2024

Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.

Background: The sinoatrial node (SN) generates the heart rate (HR). Its spontaneous activity is regulated by a complex interplay between the modulation by the autonomic nervous system (ANS) and intrinsic factors including ion channels in SN cells. However, the systemic and intrinsic regulatory mechanisms are still poorly understood.

View Article and Find Full Text PDF

Spermatogenesis is a sophisticated biological process by which spermatogonial stem cells (SSCs) undergo self-renewal and differentiation into spermatozoa. Molecular mechanisms underlying fate determinations of human SSCs by key genes and signaling pathways remain elusive. Here, we report for the first time that Yes1-associated transcriptional regulator (YAP1) is required for fate determinations of SSCs and male fertility by interacting with RAD21 and targeting NEDD4 in humans and mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!