Unlabelled: Poly (glycerol sebacate) (PGS), a tough elastomer, has been widely explored in tissue engineering due to the desirable mechanical properties and biocompatibility. However, the complex curing procedure (high temperature and vacuum) and limited hydrophilicity (∼90° of wetting angle) greatly impede its functionalities. To address these challenges, a urethane-based low-temperature setting, PEGylated PGS bioelastomer was developed with and without solvent. By simultaneously tailoring PEG and hexamethylene diisocyanate (HDI) contents, the elastomers X-P-mUs (X referred to the PEG content and m referred to HDI content) with a broad ranging mechanical properties and customized hydrophilicity were constructed. The X-P-mUs synthesized exhibited adjustable tensile Young's modulus, ultimate tensile strength and elongation at break in the range of 1.0 MPa-14.2 MPa, 0.3 MPa-7.6 MPa and 53.6%-272.8%, with the water contact angle varying from 28.6° to 71.5°, respectively. Accordingly, these elastomers showed favorable biocompatibility in vitro and mild host response in vivo. Furthermore, the potential applications of X-P-mU elastomers prepared with solvent-base and solvent-free techniques in biomedical fields were investigated. The results showed that these X-P-mU elastomers with high molding capacity at mild temperature could be easily fabricated into various shapes, used as reinforcement for fragile materials, and controllable delivery of drugs and proteins with excellent bioactivity, demonstrating that the X-P-mU elastomers could be tailored as potential building blocks for diverse applications in biomedical research.
Statement Of Significance: Poly(glycerol sebacate) (PGS), a tough biodegradable elastomer, has received great attentions in biomedical field. But the complex curing procedure and limited hydrophilicity greatly hamper its functionality. Herein, a urethane-based low-temperature setting, PEGylated PGS (PEGS-U) bioelastomer with highly-customized mechanical properties, hydrophilicity and biodegradability was first explored. The synthesized PEGS-U showed favorable biocompatibility both in vitro and in vivo. Furthermore, the PEGS-U elastomer could be easily fabricated into various shapes, used as reinforcement for fragile materials, and controllable delivery of drugs and proteins with excellent bioactivity. This versatile, user-tunable bioelastomers should be a promising biomaterials for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2018.03.011 | DOI Listing |
J Mater Chem B
August 2024
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Physical and chemical hydrogels are promising platforms for tissue engineering/regenerative medicine (TERM). In particular, physical hydrogels are suitable for use in the design of drug delivery systems owing to their reversibility and responsiveness to applied stimuli and external environment. Alternatively, the use of chemical hydrogels represents a better strategy to produce stable 3D constructs in the TERM field.
View Article and Find Full Text PDFACS Polym Au
June 2022
POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
Poly(hydroxy urethane)s (PHUs) based on 5-membered cyclic carbonates have emerged as sustainable alternatives to conventional isocyanate-based polyurethanes. However, while from the point of view of sustainability they represent an improvement, their properties are still not competitive with conventional polyurethanes. In this work, the potential of PHUs as reversible hot-melt adhesives is discussed.
View Article and Find Full Text PDFDent Mater
October 2021
Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, United States; Materials Science and Engineering Program, University of Colorado Boulder, 596 UCB, Boulder, CO, United States. Electronic address:
Objective: The objective is to develop and characterize an ester-free ether-based photo-CuAAC resin with high mechanical performance, low polymerization-induced stress compared with common BisGMA/TEGDMA (70/30) resins, and improved water stability in comparison to previously developed urethane-based photo-CuAAC resins.
Methods: Triphenyl-ethane-centered ether-linked tri-azide monomers were synthesized and co-photopolymerized with ether-linked tri-alkyne monomers under visible light irradiation using a copper(II) pre-catalyst and CQ/EDAB as the initiator. The ether-based CuAAC formulation was investigated for thermo-mechanical properties, polymerization kinetics and shrinkage stress, and flexural properties with respect to a conventional BisGMA/TEGDMA (70/30) dental resin.
Ultrasound Med Biol
June 2019
Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Nottingham, United Kingdom. Electronic address:
Urethane-based test objects are routinely used for ultrasound quality assurance because of their durability and robustness. The acoustic properties of these phantoms including speed of sound and attenuation, however, have a strong dependence on temperature. Reliable measurement of low-contrast penetration, which is widely used for ultrasound system quality assurance testing, with these phantoms is therefore problematic.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2018
School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK 73019, USA. Electronic address:
Intracranial aneurysms (ICAs) are focal dilations in the brain's arteries. When left untreated, ICAs can grow to the point of rupture, accounting for 50-80% of subarachnoid hemorrhage cases. Current treatments include surgical clipping and endovascular coil embolization to block circulation into the aneurysmal space for preventing aneurysm rupture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!