Background: The plant Stanleya pinnata hyperaccumulates Se up to 0.5% of its dry weight in organic forms, whereas the closely related Stanleya elata does not hyperaccumulate Se. ATP sulfurylase (ATPS) can catalyze the formation of adenosine 5'-phosphoselenate (APSe) from ATP and selenate. We investigated the S. pinnata ATPS2 isoform (SpATPS2) to assess its possible role in Se hyperaccumulation.

Methods: ATPS expression and activity was compared in the two Stanleya species. The ATPS2 protein sequences were modeled. Sub-cellular locations were analyzed using GFP fusions. Enzyme activity of purified recombinant SpATPS2 was measured.

Results: ATPS2 transcript levels were six-fold higher in roots of S. pinnata relative to S. elata. Overall root ATPS enzyme activity was two-fold elevated in S. pinnata. Cloning and sequencing of SpATPS2 and S. elata ATPS2 (SeATPS2) showed the predicted SeATPS2 to be canonical, while SpATPS2, although very similar in its core structure, has unique features, including an interrupted plastid targeting signal due to a stop codon in the 5' region of the coding sequence. Indeed GFP fusions revealed that SpATPS2 had exclusive cytosolic localization, while SeATPS2 showed dual localization in plastids and cytosol. SpATPS2 activity was inhibited by both sulfate and selenate, indicating that the enzyme acts on both substrates.

Conclusions: The ATPS2 from S. pinnata differs from non-accumulator ATPS2 in its elevated expression and sub-cellular localization. It likely acts on both selente and sulfate substrates.

General Significance: These observations shed new light on the role of ATPS2 in the evolution of Se hyperaccumulation in plants. This article is part of a Special Issue entitled Selenium research in biochemistry and biophysics - 200 year anniversary issue, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2018.03.014DOI Listing

Publication Analysis

Top Keywords

enzyme activity
12
atp sulfurylase
8
stanleya pinnata
8
stanleya elata
8
gfp fusions
8
atps2
7
pinnata
6
spatps2
6
stanleya
5
activity
5

Similar Publications

Rapid optical determination of salivary cortisol responses in individuals undergoing physiological and psychological stress.

Sci Rep

December 2024

Research Centre for Biomedical Engineering (RCBE), School of Science and Technology, City, University of London, Northampton Square, London, EC1V 0HB, UK.

Traditional methods for management of mental illnesses in the post-pandemic setting can be inaccessible for many individuals due to a multitude of reasons, including financial stresses and anxieties surrounding face-to-face interventions. The use of a point-of-care tool for self-management of stress levels and mental health status is the natural trajectory towards creating solutions for one of the primary contributors to the global burden of disease. Notably, cortisol is the main stress hormone and a key logical indicator of hypothalamic-pituitary adrenal (HPA) axis activity that governs the activation of the human stress system.

View Article and Find Full Text PDF

Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities.

Nat Commun

December 2024

College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.

Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases).

View Article and Find Full Text PDF

The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry.

View Article and Find Full Text PDF

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!