Optimization of CO adsorption capacity and cyclical adsorption/desorption on tetraethylenepentamine-supported surface-modified hydrotalcite.

J Environ Sci (China)

Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Published: March 2018

The objective of this research was to investigate CO adsorption capacity of tetraethylenepentamine-functionalized basic-modified calcined hydrotalcite (TEPA/b-cHT) sorbents at atmospheric pressure formed under varying TEPA loading levels, temperatures, sorbent weight to total gaseous flow rate (W/F) ratios and CO concentrations in the influent gas. The TEPA/b-cHT sorbents were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) analysis of nitrogen (N) adsorption/desorption and carbon-hydrogen-nitrogen (CHN) elemental analysis. Moreover, a full 2 factorial design with three central points at a 95% confidence interval was used to screen important factor(s) on the CO adsorption capacity. It revealed that 85.0% variation in the capacity came from the influence of four main factors and the 15.0% one was from their interactions. A face-centered central composite design response surface method (FCCCD-RSM) was then employed to optimize the condition, the maximal capacity of 5.5-6.1mmol/g was achieved when operating with a TEPA loading level of 39%-49% (W/W), temperature of 76-90°C, W/F ratio of 1.7-2.60(g·sec)/cm and CO concentration of 27%-41% (V/V). The model fitted sufficiently the experimental data with an error range of ±1.5%. From cyclical adsorption/desorption and selectivity at the optimal condition, the 40%TEPA/b-cHT still expressed its effective performance after eight cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2017.02.015DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
12
cyclical adsorption/desorption
8
tepa/b-cht sorbents
8
tepa loading
8
capacity
5
optimization adsorption
4
capacity cyclical
4
adsorption/desorption tetraethylenepentamine-supported
4
tetraethylenepentamine-supported surface-modified
4
surface-modified hydrotalcite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!